CLAP Protocol

BioT transfection:

- 1. Grow cells (i.e., HEK293T) to 70-80% confluency for day of transfection.
- 2. The following is for transfection using BioT reagent (Bioland) on a 10 cm plate of adherent cells:
 - a. In a 1.5 mL tube, mix 500 μL of 1X PBS and 5 μg of desired plasmid.
 - b. Add 7.5 μL of BioT (μL of BioT scales 1.5x with μg of plasmid) <u>directly</u> to mixture, making sure to avoid the sides of the tube.
 - c. Mix thoroughly by pipetting up and down.
 - d. Incubate mixture for 15 minutes at room temperature, then sprinkle the mixture drop-wise over cells.
- 3. Incubate cells for 24-48 hours prior to crosslinking and collection.

UV-crosslinking and cell collection:

- 1. Chill 1X PBS prior to crosslinking.
- 2. Remove media carefully from cells and wash once with room temperature 1X PBS.
- 3. Aspirate PBS before crosslinking.
- 4. Remove lid from cells and UV-crosslink using "Energy" setting, set at 2500 x 100 μJ/cm².
- 5. Immediately add 1 mL of ice-cold PBS to plate.
- 6. Scrape cells down, pipette up and down to resuspend and aliquot into 1.5 mL tubes.
- 7. Spin down cells for 5 minutes at 1000 x g.
- 8. Remove PBS from cells and either proceed to **Lysis** or flash freeze and store at -80°C for future use.

Prepare HaloLink Resin:

- 1. Aliquot 50 µL of HaloLink Resin[™] per capture condition (this is 200 µL of the 25% slurry from the bottle).
- 2. Spin at 2000 x g for 1 minute and discard supernatant.
- 3. Add 5X the volume of resin of 1X PBS + 0.1% Triton-X, vortex for 5 seconds, then spin down at 2000 x g for 1 min and discard supernatant.
- 4. Wash the resin twice more in this way.
- 5. Block resin: add 200 µL of 1% w/v BSA in PBS (RNase-free) to each resin and incubate at room temperature with rotation (i.e., HulaMixer) for 20 minutes.
- 6. Spin down at 2000 x g for 1 min and discard supernatant.
- 7. Wash resin three times using 1X PBS + 0.1% Triton-X.
- 8. Add 2X the volume of resin of 1X PBS + 0.1% Triton-X and keep on ice until lysate is ready.
- 9. When ready, spin down resin at 2000 x g for 2 minutes and discard supernatant prior to adding lysate.

Lyse cells:

1. Prepare Lysis Buffer (1X):

Stock component	Volume	
RIPA Buffer	1000 µL	
50X Promega* protease inhibitor cocktail	20 µL	*some protease inhibitors block HaloTag
TURBO DNase	10 µL	
100X Mn ²⁺ /Ca ²⁺ mix	10 µL	
RNase inhibitor (i.e., RiboLock)	5 µL	
Total	1045 µL	

- 2. Add 1 mL of Lysis Buffer to each cell pellet and break up the pellet by pipetting up and down several times.
- 3. Incubate for 10min on ice.
- 4. Sonicate cells (optional for HEK293T cells):
 - a. For mouse ES cells, we use a Branson sonicator and sonicate at 20% amplitude for 30 seconds, 0.7 s on, 2.3 s off) at 3-4 W.
- 5. Heat at 37°C for 10 minutes with shaking (1200 rpm on ThermoMixer) to allow for increased DNAse activity.
- 6. Spin down cells at 4°C at 15000 x g for 2 minutes to clarify lysate.
- 7. Move supernatant to a new tube and keep on ice for the remainder of protocol unless otherwise specified.
 - a. Save 50 μL of lysate (keep as a separate aliquot) to use for input library processing.
 - b. Save an additional 20 μL of lysate (keep as a separate aliquot) to use for expression testing by Halo-ligand AlexaFluor.
- 8. Add lysate to 50 μL of prepared HaloLink resin and incubate for either 1-2 hours at room temperature or 4°C overnight, with rotation (i.e., HulaMixer).

Expression testing (i.e., by HaloTag AlexaFluor):

- 1. Take 20 μL of soluble lysate and add 1.5 μL of a 1:60 dilution of HaloTag AlexaFluor 660 ligand (Promega). Mix thoroughly by pipetting up and down.
- 2. Incubate mixture for 20 minutes at room temperature in the dark.
- 3. Make mastermix of Gel Loading Buffer:

- a. For each sample, this is 4 µL of 10X Bolt[™] Sample Reducing Agent, 10 µL of 4X LDS, and 4 µL of H₂O per sample.
- 4. To stop the reaction, add 1X Gel Loading Buffer to each sample.
- 5. Denature samples at 90°C for 6 minutes, then bring to room temperature.
- 6. Run 40 μL of sample on Bis-Tris 4-12% protein gel at 200 V for 45 minutes, or until the dye front has passed out of the gel.
- 7. After gel is finished running, image gel directly on LI-COR Odyssey.

CLAP washes:

Buffers should be made fresh and warmed at 70°C prior to usage. Buffer recipes are collated at the end of this document.

- 1. Spin down captures at 2000 x g for 2 minutes and remove flowthroughs carefully.
 - a. The resin may have a different consistency depending on degree of protein capture. With strong expression, we noticed the post-capture sepharose often resembled gels.
- 2. Wash resin twice using 400 μ L of RIPA Buffer by vortexing resin briefly, spinning down at 2000 x g for 1 minute, and removing the buffer carefully.
 - a. Be sure to not disturb the resin! It is okay to leave a bit of leftover buffer after each wash.
- For each subsequent wash, use 400 of each μL buffer, incubate with mixing (1200 rpm on ThermoMixer) at 90°C for 3 minutes, spin down resin at 2000 x g for 30 seconds, and carefully remove buffer:

 - b. CLAP Wash 2 (1M NaCl CLAP Wash Buffer)
 - c. CLAP Wash 3 (8M Urea CLAP Wash Buffer)
 - d. CLAP Wash 4 (Tween-20 CLAP Wash Buffer)
 - e. CLAP Wash 5 (TEV CLAP Wash Buffer)
- 4. After final wash, if planning to check capture by western blot, split the resin 90:10 (90% for **Proteinase K elution** and 10% for **TEV cleavage and elution**).
- 5. Spin down resin at 7500 x g for 1 minute and discard supernatant.

Proteinase K elution:

- 1. Add 100 μ L of NLS CLAP Wash Buffer and 10 μ L of proteinase K to each sample.
- 2. Incubate with shaking (1200 rpm on ThermoMixer) at 50°C for 20 minutes.
 - a. Digest the inputs at this time in the same way (add 100 μL of NLS CLAP Wash Buffer and 10 μL proteinase K to 50 μL input).
- 3. Transfer slurry to a Pierce[™] Micro-Spin column and spin down at 2000 x g for 30 seconds.
- 4. Purify RNA using Zymo RNA Clean & Concentrator-5 (>17 nt protocol).
- 5. Elute in 15 μ L of H₂O.
- 6. Proceed to Library preparation or freeze samples at -20°C for storage.

TEV cleavage and elution:

This step is to check for successful protein capture of each target.

- 1. Make 1X TEV reaction mastermix:
 - a. For 100 μ L of buffer, add the following: 5 μ L of 20X ProTEV Buffer, 1 μ L of 100 mM DTT, and 3 μ L of ProTEV in 91 μ L of H₂O.
- 2. Add 20 μL of TEV reaction mastermix to each resin and incubate at 30°C for 120 minutes with shaking (1200 rpm on a ThermoMixer).
- 3. Stop reaction by adding Gel Loading Buffer to 1X concentration.
- 4. Boil resin at 80°C for 6 minutes.
- 5. Transfer slurry to a Pierce[™] Micro-Spin column and spin down at 2000 x g for 30 seconds.
- 6. Load all of each sample on a protein gel and proceed with western blot.

Library preparation

DNase and end repair:

1. Add RNA to FastAP mix according to the table below:

Total	10 µL
ddH ₂ O	3 µL
Turbo DNase	1 µL
PNK enzyme	3 µL
10X PNK Buffer	3 µL

- 2. For inputs only (which need thorough DNase treatment and RNA fragmentation):
 - a. Bring inputs up to 44 μ L in H₂O.
 - b. Add 5 μ L of 10X TURBO DNase buffer and 1 μ L of TURBO DNase to each sample.
 - c. Incubate at 37°C for 15 minutes with shaking (1200 rpm on a ThermoMixer).
 - d. Purify RNA using Zymo RNA Clean & Concentrator-5 (>17 nt protocol).
 - e. Elute in 16 μ L H₂O.
 - f. Add 2 µL of 10X FastAP buffer to cleaned RNA. Move samples to strip tubes.
 - g. Fragment RNA for 90 seconds at 91°C, then hold at 4°C.
 - h. Proceed to FastAP reaction by adding 1 μ L of FastAP and 1 μ L of RiboLock on top of the reaction.
- 3. Incubate for 10 minutes at 37°C with shaking (1200 rpm on a ThermoMixer).
- 4. Add PNK mix on top of reaction:

1 μL 3 μL L
1 µL
3 µL
3 µL

- 5. Incubate for an additional 10 minutes at 37°C with shaking (1200 rpm on a ThermoMixer).
- 6. Purify RNA using Zymo RNA Clean & Concentrator-5 (>17 nt protocol).

RNA ligation:

- 1. To each sample, add 1.5 μ L of DMSO and 1 μ L of **20\muM RIL19 adapter**.
 - a. 5' /Phosphate/rArGrArUrCrGrGrArArGrArGrCrGrUrCrGrUrG/3ddC/ 3'
- 2. Heat at 65°C for 2 minutes and hold at 4°C.
- 3. Prepare Ligation mastermix (make more than needed since PEG 8000 is viscous):

10X T4 RNA Ligase Buffer	2 µL
ATP (100 mM)	0.2 µL
50% PEG 8000	6 µL
RNase inhibitor (i.e.,	0.3 µL
RiboLock)	
T4 RNA Ligase, High	0.3 µL
concentration	
Total	8.8 µL

- 4. Add 8.8 µL of Ligation mastermix to each sample.
- 5. Add an additional 1 μ L of T4 RNA Ligase to each sample and pipette up and down.
- 6. Incubate for 1 hour and 15 minutes with shaking (1600 rpm at room temperature, 1 minute on, 5 minutes off).
- 7. Clean samples using SILANE beads (Dynabeads):
 - a. Per sample, wash 12 µL SILANE beads twice with 50 µL of RLT (QIAGEN).
 - b. Resuspend beads in 60 μL of RLT and add to sample. Mix thoroughly and let sit for 1 minute.
 - c. Add 50 μ L of 100% ethanol. Mix thoroughly and let sit for 2 minutes.
 - d. Magnetize beads and remove supernatant.
 - e. Wash beads three times with 80% ethanol.
 - f. Elute in 13 μ L of H₂O.

Reverse transcription:

- 1. Add 1 μ L of **5\muM AR17** to each sample.
 - a. 5' ACACGACGCTCTTCCGA 3'
- 2. Heat at 65°C for 2 minutes and hold at 4°C.
- 3. Make reverse transcription mastermix:

5X RT Buffer	4 µL
10 mM dNTP	2 µL
RNase inhibitor	0.5 µL
(i.e., RiboLock)	
Maxima RT	1 µL
Total	7.5 μL

- 4. Add 7.5 μ L of reverse transcription mastermix to each sample.
- 5. Incubate at 50°C for 20 minutes, then drop to 4°C and hold.
 - a. Potential stopping point: do not heat inactivate, store samples directly in 4°C.
- 6. Add 4 μL of ExoI and incubate samples at 37°C for 15 minutes.
- 7. Quench reaction by adding 1 μ L of 0.5 M EDTA and placing samples on ice for 3 minutes.

- To fragment RNA, add 2.5 μL of 1M NaOH and heat samples at 80°C for 6 minutes (hold at 4°C).
- 9. Neutralize samples by adding 2.5 µL of 1M HCl.
- 10. Clean samples using SILANE beads (Dynabeads):
 - a. Per sample, wash 12 μ L SILANE beads twice with 50 μ L of RLT (QIAGEN).
 - b. Resuspend beads in 90 μL of RLT and add to sample. Mix thoroughly and let sit for 1 minute.
 - c. Add 75 μL of 100% ethanol. Mix thoroughly and let sit for 2 minutes.
 - d. Magnetize beads and remove supernatant.
 - e. Wash beads three times with 80% ethanol.
 - f. Elute in 16 μ L of H₂O.

cDNA splint ligation:

- 1. We use an annealed "splint" 3TR3 adapter for cDNA ligation:
 - a. SplintTop-3TR3-Spcr: CAGACGTGTGCTCTTCCGATCTNNNNN/3SpC3/
 - b. SplintBot-3TR3-5Phos: /5Phos/AGATCGGAAGAGCACACGTCTG/3SpC3/
 - c. Splint structure is depicted below:

5' AGATCGGAAGAGCACACGTCTG

2. Make splint ligation mastermix:

2X Instant Sticky	15 µL
Mastermix	
45 µM 3TR3 Splint	1 µL
cDNA	14 µL
Total	30 µL

- 3. Add 15 μ L of splint ligation mastermix to cDNA samples.
- 4. Incubate for 1 hour (or overnight) at room temperature with shaking (1600 rpm on a ThermoMixer, 1 minute on, 5 minutes off).
- 5. Clean samples using SILANE beads (Dynabeads):
 - a. Per sample, wash 12 µL SILANE beads twice with 50 µL of RLT (QIAGEN).
 - b. Resuspend beads in 90 μL of RLT and add to sample. Mix thoroughly and let sit for 1 minute.
 - c. Add 75 μL of 100% ethanol. Mix thoroughly and let sit for 2 minutes.
 - d. Magnetize beads and remove supernatant.
 - e. Wash beads three times with 80% ethanol.
 - f. Elute in 35 μ L of H₂O.
- Proceed to PCR using 21 μL of elution (remainder can be saved for later reamplification).

PCR:

2PUNI + 2PBC (12.5 µM each)	4 µL
2X Q5 mastermix	25 µL
cDNA sample	21 µL
Total	50 µL

Temp (°C)	Time (s)	Cycles
98	60	1 cycle
98	15	4 cycles
69	15	
72	90	
98	15	10 cycles (CLAP elutions) OR
72	90	4 cycles (CLAP inputs)
72	120	

1. Add 1.2x the volume of SPRI beads (i.e., 60 μ L for a 50 μ L PCR) to each sample.

2. Mix thoroughly and let sit for 5-10 minutes.

- 3. Magnetize SPRI beads for 3 minutes and remove supernatant.
- 4. Wash twice using 150 μ L of 80% ethanol (made fresh).
- 5. Elute in 13 μ L of H₂O.

Buffers:

1X PBS + 0.1% Triton-X:

Stock solution	Volume
10X PBS	5 mL
10% Triton X-100	500 µL
Ultrapure dH ₂ O	44.5 mL
Total	50 mL

RIPA Buffer:

Stock solution	Volume
1M HEPES, pH 7.4	2 mL
5M NaCl	800 µL
10% DOC	2 mL
20% SDS	200 µL
10% NP-40	4 mL
Ultrapure dH ₂ O	31 mL
Total	40 mL

NLS CLAP Wash (CLAP Wash 1):

Stock solution	Volume
20% NLS	4 mL
500mM EDTA	800 µL
10X PBS	4 mL
Ultrapure dH ₂ O	31.2 mL
Total	40 mL

1M NaCl CLAP Wash (CLAP Wash 2):

Stock solution	Volume
1M HEPES, pH 7.4	2 mL
5M NaCl	8 mL
10% NP40	400 µL
Ultrapure dH ₂ O	29.6 mL
Total	40 mL

8M Urea CLAP Wash (CLAP Wash 3):

Stock solution	Volume
1M HEPES, pH 7.4	2 mL
10% NP-40	400 µL
8M Urea	37.2 mL
Total	40 mL

Tween-20 CLAP Wash (CLAP Wash 4):

Stock solution	Volume
1M HEPES, pH 7.4	2 mL
10% NP-40	400 µL
10% Tween-20	400 µL
Ultrapure dH ₂ O	37.2 mL
Total	40 mL

TEV CLAP Wash (CLAP Wash 5):

Stock solution	Volume
1M HEPES, pH 7.4	2 mL
10% NP-40	400 µL
500mM EDTA	80 µL
Ultrapure dH ₂ O	37.52 mL
Total	40 mL

100X Mn²⁺/Ca²⁺ mix:

Stock solution	Volume
1M MnCl ₂	250 µL
1M CaCl ₂	50 µL
Total	1000 µL