A Large Intergenic Noncoding RNA
Induced by p53 Mediates Global Gene
Repression in the p53 Response

Maite Huarte,’-2* Mitchell Guttman,'-3 David Feldser,34 Manuel Garber,! Magdalena J. Koziol,:2
Daniela Kenzelmann-Broz,5¢ Ahmad M. Khalil,'-2 Or Zuk,! Ido Amit,! Michal Rabani,! Laura D. Attardi,5¢ Aviv Regev,!-3

Eric S. Lander,'-37 Tyler Jacks,3* and John L. Rinn1-2*

1The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

2Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
3Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4The Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA

5Department of Radiation Oncology
SDepartment of and Genetics
Stanford University School of Medicine, Stanford, CA 94305, USA

7Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA
*Correspondence: mhuarte@broadinstitute.org (M.H.), jrinn@broadinstitute.org (J.L.R.)

DOI 10.1016/j.cell.2010.06.040

SUMMARY

Recently, more than 1000 large intergenic noncoding
RNAs (lincRNAs) have been reported. These RNAs
are evolutionarily conserved in mammalian genomes
and thus presumably function in diverse biologi-
cal processes. Here, we report the identification of
lincRNAs that are regulated by p53. One of these
lincRNAs (lincRNA-p21) serves as a repressor in
p53-dependent transcriptional responses. Inhibition
of lincRNA-p21 affects the expression of hundreds
of gene targets enriched for genes normally re-
pressed by p53. The observed transcriptional repres-
sion by lincRNA-p21 is mediated through the phys-
ical association with hnRNP-K. This interaction is
required for proper genomic localization of hnRNP-
K at repressed genes and regulation of p53 mediates
apoptosis. We propose a model whereby transcrip-
tion factors activate lincRNAs that serve as key
repressors by physically associating with repressive
complexes and modulate their localization to sets of
previously active genes.

INTRODUCTION

It has become increasingly clear that mammalian genomes
encode numerous large noncoding RNAs (Mercer et al., 2009;
Ponting et al., 2009; Mattick, 2009; Ponjavic et al., 2007). It
has been recently reported the identification of more than 1000
large intergenic noncoding RNAs (lincRNAs) in the mouse
genome (Carninci, 2008; Guttman et al., 2009). The approach
to identify lincRNAs was by searching for a chromatin signature
of actively transcribed genes, consisting of a histone 3-lysine

4 trimethylated (H3K4me3) promoter region and histone 3-lysine
36 trimethylation (H3K36me3) corresponding to the elongated
transcript (Guttman et al., 2009). These lincRNAs show clear
evolutionary conservation, implying that they are functional
(Guttman et al., 2009; Ponjavic et al., 2007).

In an attempt to understand the potential biological roles of
lincRNAs, a method to infer putative function based on correla-
tion in expression between lincRNAs and protein-coding genes
was developed. These studies led to preliminary hypotheses
about the involvement of lincRNAs in diverse biological pro-
cesses, from stem cell pluripotency to cell-cycle regulation
(Guttman et al., 2009). In particular, we observed a group of
lincRNAs that are strongly associated with the p53 transcrip-
tional pathway. p53 is an important tumor suppressor gene
involved in maintaining genomic integrity (Vazquez et al., 2008).
In response to DNA damage, p53 becomes stabilized and trig-
gers a transcriptional response that causes either cell arrest or
apoptosis (Riley et al., 2008).

The p53 transcriptional response involves both activation and
repression of numerous genes. While p53 is known to transcrip-
tionally activate numerous genes, the mechanisms by which p53
leads to gene repression have remained elusive. We recently
reported evidence that many lincRNAs are physically associated
with repressive chromatin modifying complexes and suggested
that they may serve as repressors in transcriptional regulatory
networks (Khalil et al., 2009). We therefore hypothesized that
p53 may repress genes in part by directly activating lincRNAs,
which in turn regulate downstream transcriptional repression.

Here, we show that lincRNAs play a key regulatory role in the
p53 transcriptional response. By exploiting multiple independent
cell-based systems, we identify lincRNAs that are transcriptional
targets of p53. Moreover, we find that one of these p53-activated
lincRNAs—termed lincRNA-p21—serves as a transcriptional
repressor in the p53 pathway and plays a role in triggering apo-
ptosis. We further demonstrate that lincRNA-p21 binds to

Cell 142, 409-419, August 6, 2010 ©2010 Elsevier Inc. 409


mailto:mhuarte@broadinstitute.org
mailto:jrinn@broadinstitute.org

Doxorubicin

+/C<e‘$ ){j
=
DNA damage
+Cre

4
=7

p53 restoration

LSLILSL

p53 - s
MEFs —

time (hours)

LSLLSL

—_—>

————

0 8 16244048
time (hours)

KRAS p53
Lung Tumor

microarray
profiling

Oh_3h _6h 9h

Oh 3h 6h 9h
——

645 mRNAs
995 mRNA
38 lincRNAs

5

Name H3K4me3 sequence

{mRNAs
LincRNAs

strand fold induction

Figure 1. Several LincRNAs Are p53 Tran-
scriptional Targets

(A) Experiment layout to monitor p53-dependent
transcription. p53-restored (+Cre) or not restored
(~Cre) p53-SYSL MEFs were treated with
500 nM dox for O, 3, 6, and 9 hr (upper left).
KRAS (p53-SYSY tumor cells were treated with
hydroxytamoxifen for p53 restoration for 0, 8, 16,
24, 40, or 48 hr (lower left). RNA was subjected
to microarray analysis of mMRNAs and lincRNAs.
(B and C) Venn diagrams showing the number of
shared and distinct mRNAs (B) or lincRNAs (C)
induced in a p53-dependent manner in the MEF
or KRAS systems.

(D and E) mRNAs (D) and lincRNAs (E) activated by
p53 induction (FDR < 0.05) in MEF or KRAS
system. Colors represent transcripts above (red)
or below (blue) the global median scaled to
8-fold activation or repression, respectively.

(F) Promoter region, conserved p53 binding
motif, promoter orientation, and p53-dependent
fold induction in reporter assays of lincRNA
promoters induced in a p53-dependent manner
(values are average of at least three biological
replicates [+STD]; p values are determined by
t test).

(G) p53-dependent induction of lincRNA pro-
moters requires the consensus p53 binding ele-
ments. Relative firefly luciferase expression
driven by promoters with p53 consensus motif
(lincRNA-p21, lincRNA-MkIn1) or with deleted
motif (AlincRNA-p21 and AlincRNA-MkIn1) in
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hnRNP-K. This interaction is required for proper localization of
hnRNP-K and transcriptional repression of p53-regulated genes.
Together, these results reveal insights into the p53 transcrip-
tional response and lead us to propose that lincRNAs may serve
as key regulatory hubs in transcriptional pathways.

RESULTS

Numerous LincRNAs Are Activated

in a p53-Dependent Manner

As a first attempt to dissect the functional mechanisms of
lincRNAs, we focused on a strong association in the expression
patterns of certain lincRNAs and genes in the p53 pathway
(Guttman et al.,, 2009). In order to determine whether these
lincRNAs are regulated by p53, we employed two independent
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normalized by renilla levels (average of three repli-
cates +STD).

(H) p53 specifically binds to p53 motifs in lincRNA
promoters. p53 ChIP enrichment in p53** and
p53~/~ MEFs on regions with p53 motifs (lincRNA-
p21, lincRNA-MkiIn1, Cdknla) or two irrelevant
regions (controls). Enrichment values are relative
to IgG and average of 3 replicates (+STD).

See also Figure S1 and Table S1.

experimental systems that allow us to monitor gene expression
changes at different times after p53 induction (Ventura et al., 2007).

The first system uses mouse embryonic fibroblasts (MEFs)
derived from mice where the endogenous p53 locus is inacti-
vated by insertion of a transcriptional termination site flanked
by loxP sites (LSL) in the first intron. This endogenous p53 locus
(p53 “SYSY is restorable by removal of the stop element by Cre
recombination (Ventura et al., 2007). The p53 “SYS- MEFs were
treated with AdenoCre virus expressing the Cre recombinase to
reconstitute the normal p53 allele or AdenoGFP control virus to
maintain the inactive p53 "S5t allele. Then we compared the
transcriptional response between the p53-reconstituted and
p53 SULSE MEFs after 0, 3, 6, and 9 hr of DNA damage treatment
with doxorubicin (we will refer to this system as “MEFs”)
(Figure 1A). The second system uses a lung tumor cell line



derived from mice expressing an oncogenic K-Ras mutation
(K-RasG12D) and a restorable p53 knockout allele (p53 -SHHSh),
similar to that described above (D.F. and T.J., unpublished data).
We compared the transcriptional response at different times
(0, 8, 16, 24, 40, and 48 hr) after restoration of p53 expression
by Cre recombination (Experimental Procedures) (we will refer
to this system as “KRAS”) (Figure 1A).

To assess the transcriptional responses in each of these
systems, we isolated total RNA at each time point before
and after p53 restoration and performed DNA microarray anal-
ysis to monitor protein-coding gene expression levels. In the
MEF system and KRAS systems, we identified a total of 1067
(645 activated, 422 repressed) and 1955 (995 activated, 960
repressed) genes, respectively, that were regulated in a p53-
dependent manner (false discovery rate [FDR] < 0.05) (Figures
1B and 1D and Table S1, parts A and B, available online). The
sets of p53-induced genes identified in the two systems showed
significant (p < 1078) overlap, including such canonical p53
targets as Cdnk1a, Mdm2, Perp, and Fas (Table S1, parts A
and B). There are also a number of p53-induced genes unique
to each system, likely reflecting specific properties of each
cell-type (Levine et al., 2006) (Figure S1C and Table S1, parts
A and B).

Functional analysis of the classes of genes that are enriched
among the genes regulated by p53 in both the MEF and KRAS
systems showed strong enrichment for known p53-regulated
processes, such as the cell cycle and apoptosis (Figures S1A
and S1B). Moreover, gene set enrichment analysis (GSEA) (Sub-
ramanian et al., 2005) of previously published microarray anal-
yses revealed a significant overlap with the p53 regulated genes
identified here (Table S1, parts H and I). Together these results
demonstrate that these two systems are largely reflective of
canonical p53 transcriptional responses.

We next examined lincRNAs regulated by p53 in these two
systems across the same time course, by analogously using
a custom tiling microarray representing 400 lincRNAs and
analyzing the data with previously described statistical methods
(Guttman et al., 2009) (Experimental Procedures). We found 38
and 32 lincRNAs induced by p53 in the MEF and KRAS systems,
respectively (Figures 1C and 1E and Table S1, parts C-G). Inter-
estingly, 11 lincRNAs were induced by p53 in both model
systems (Figure 1C and Table S1, part C), many more than
expected by chance (p < 107%). These results confirm that, in
a manner similar to canonical p53 protein coding gene targets,
numerous lincRNAs are temporally regulated by p53.

LincRNAs Are Direct Transcriptional Targets of p53

We sought to identify lincRNAs that might be canonical p53
target genes. As a first approach, we examined the promoters
of p53-induced lincRNA for enrichment of evolutionarily con-
served p53-binding motifs (Garber et al., 2009) (Extended
Experimental Procedures). The promoters of the p53-induced
lincRNAs were highly enriched for conserved p53 motifs relative
to the promoters of all lincRNAs (p < 0.01). We selected two
lincRNAs whose promoter regions contain highly conserved
canonical p53-binding motifs (el-Deiry et al., 1992; Funk et al.,
1992); we termed these lincRNA-p21 and lincRNA-Mkin1 (with
the names referring to the neighboring gene). We next performed

transcriptional reporter assays for these lincRNAs. Specifically,
we cloned their promoters (as defined by the H3K4me3 peaks
[Guttman et al., 2009]) into a luciferase reporter vector (Experi-
mental Procedures) and transfected the constructs along with
a vector to normalize transfection efficiency. Both promoters
showed significant induction of firefly luciferase in p53-wild-
type but not in p53 null cells (p < 0.01) (Figures 1F and 1G).

To determine whether the canonical p53-binding motif is
required for the observed transactivation, we repeated these
experiments in the absence of the p53-binding motif. Mutant
promoters resulted in the abolition of the observed transactiva-
tion for both lincRNA-p21 and lincRNA-MkIn1 in p53*/* cells
(Figure 1F). Finally, we performed chromatin immunoprecipita-
tion (ChIP) experiments to determine whether p53 directly binds
to the sites containing the consensus motifs in vivo. Indeed, p53
is bound to the site containing the consensus motif in the
promoters of both lincRNA-p21 and lincRNA-Mkin1 in p53*/*
but not p53*/* MEFs treated with doxorubicin, and it is not
enriched at negative control sites of irrelevant regions (Figure 1H
and Extended Experimental Procedures). Together, these
results demonstrate that lincRNA-p21 and lincRNA-Mkin1 are
bona fide p53 transcriptional targets.

LincRNA-p21 Is Induced by p53 in Different Cell Systems
We were intrigued by the p53 transcriptional target incRNA-p21,
which resides ~15 Kb upstream of the gene encoding the critical
cell-cycle regulator Cdkn1a (also known as p27), a canonical
transcriptional target of p53 (Riley et al., 2008) (Figures 2A-2C,
Figure S2A, and Table S1, parts C-E). Given the proximity of
lincRNA-p21 to the Cdkn1a gene, we sought to ensure that the
lincRNA transcript is distinct from that of the Cdkn1a gene. To
this end, we cloned the full-length transcriptional unit of incRNA-
p21 using the 5 and 3' RACE method (Schaefer, 1995); the
transcript contains two exons comprising 3.1 Kb (Figure 2B).
In support of lincRNA-p21 being an independent transcript,
lincRNA-p21 is transcribed in the opposite orientation from the
Cdkn1a gene. Furthermore, the analysis of chromatin structure
in mouse embryonic stem cells (MESCs) (Mikkelsen et al., 2007)
indicates that these are distinct genes with distinct promoters
(Figure S2A).

We next examined the transcriptional regulation of lincRNA-
p21 in two additional cancer-derived cell lines. Specifically, we
irradiated p53-MSt mice to induce lymphomas and sarcomas
and then restored p53 expression in tumor-derived cells (Exper-
imental Procedures) (Ventura et al., 2007). In cells derived in both
tumor types, lincRNA-p21 was strongly induced after p53 resto-
ration. Moreover, the induction of lincRNA-p21 followed similar
kinetics as those of p53 and Cdnk7a, consistent with lincRNA-
p21 being a primary transcriptional target of p53 (Figure 2D
and Figure S2B).

We further investigated the orthologous lincRNA-p21 locus in
the human genome. We first mapped the promoter (H3K4me3
domain) of lincRNA-p21 to human genome. Interestingly, this
region corresponds to one of four intergenic p53-binding sites
identified from a study by Wei et al. (2006) (Figure 2B) performing
p53 ChIP followed by sequencing. Next, we mapped the
lincRNA-p21 exonic structures to the human genome to deter-
mine whether this region is expressed and induced by DNA
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Figure 2. LincRNA-p21: A p53 Target Gene
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damage in human fibroblasts. Indeed, gRT-PCR showed that the
orthologous 5 exon region (adjacent to observed p53 ChIP
binding site by Wei et al.) of human lincRNA-p21 is expressed
and strongly induced in human fibroblasts upon DNA damage
(Figure 2C and Extended Experimental Procedures).

Collectively, these results provide evidence that both the
human and mouse lincRNA-p21 promoters are bound by p53
resulting in transcriptional activation in response to DNA
damage. Moreover, lincRNA-p21 is induced by p53 in diverse
biological contexts, including multiple different tumor types
(Figure 2D and Figure S2B), suggesting that lincRNA-p21 plays
a role in the p53 pathway.

LincRNA-p21 as a Repressor in the p53 Pathway
We next investigated the consequence of the loss of lincRNA-
p21 function in the context of the p53 response. We reasoned
that, if incRNA-p21 plays a role in carrying out the p53 transcrip-
tional response, then inhibition of lincRNA-p21 would show
effects that overlap with inhibition of p53 itself. To test this
hypothesis, we performed RNA interference (RNAi)-mediated
knockdown of lincRNA-p21 and p53 separately and monitored
the resulting changes in mRNA levels by DNA microarray
analysis.

Toward this end, we first designed a pool of small interfering
RNA (siRNA) duplexes targeting lincRNA-p21, a pool targeting
p53 or nontargeting control sequences. We validated that each
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See also Figure S2.
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pool was effective at knocking down its intended target genes
in p53-SYSt restored MEFs (Figures 3A and 3B). We then
used microarray analysis to examine the broader transcriptional
consequences of knockdown of p53 and lincRNA-p21. We iden-
tified 1520 and 1370 genes that change upon knockdown of p53
and lincRNA-p21, respectively (relative to nontargeting control
siRNA, FDR < 0.05). We observed a remarkable overlap of
930 genes in both the lincRNA-p21 and p53 knockdowns, vastly
more than would be expected by chance (p < 1072°) (Figure 3C,
Figure S3A, and Table S2). Strikingly, 80% (745/930) of the
common genes are derepressed in response to both p53 and
lincRNA-p21 knockdown, much higher proportion than ex-
pected by chance (p < 1079 (Figure 3C and Table S2) when
compared to all genes affected by the p53 knockdown (Fig-
ure S3A). This observation suggests that lincRNA-p21 partici-
pates in downstream p53 dependent transcriptional repression.

To demonstrate that the observed derepression upon
lincRNA-p21 knockdown is indeed p53 dependent and is not
due to off target effects of the RNAi-mediated knockdown, we
performed several additional experiments and analyses. First,
we repeated the knockdown experiments with four individual
siRNAs targeting lincRNA-p21, transfected separately rather
than in a pool and confirmed the derepression effect on select
target genes (Figure S3F and Table S2). Second, we confirmed
that the same genes that were derepressed in the lincRNA-p21
and p53 knockdown experiments correspond to genes that are
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normally repressed upon p53 induction in both the KRAS and
MEF systems, in the absence of RNAI treatment (GSEA FDR <
0.002) (Figure 3D). Third, we demonstrated that enforced
expression of lincRNA-p21 (Experimental Procedures) also per-
turbed the expression of genes that are normally regulated by
p53 in both the KRAS and MEF systems (GSEA FDR < 0.01)
(Figure S3H). Finally, we repeated the siRNA experiments in
the absence of p53 (dox/-AdCre) and demonstrated that dere-
pression of these genes did not occur upon siRNA-mediated
knockdown in the absence of p53 (Figure S3l). Collectively,
these results indicate that lincRNA-p21 acts to repress many
genes in p53-dependent transcriptional response.

lincRNA-p21 Regulates Apoptosis

The activation of the p53 pathway has two major phenotypic
outcomes: growth arrest and apoptosis (Levine et al., 2006).
Consistent with this, our microarray analysis demonstrates that
p53 and lincRNA-p21 both regulate a number of apoptosis
and cell-cycle regulator genes (Figure 3E, Figure S3G, and
Table S2, parts A and B). Thus, we aimed to determine the phys-
iological role of lincRNA-p21 in these processes.

Toward this end, we used RNAi-mediated knockdown of
lincRNA-p21 in dox-treated or untreated primary MEFs. We simi-
larly performed RNAi-mediated knockdown of p53 (as a positive
control) or used the nontargeting siRNA pool (as a negative
control) under the same conditions. We observed a significant
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Figure 3. LincRNA-p21 Is a Global
Repressor of Genes in the p53 Pathway

(A) RNAi-mediated knockdown of lincRNA-p21
and p53. Relative RNA levels determined by
gRT-PCR in p53-reconstitued p53-S“-S- MEFs
transfected with the indicated siRNAs and treated
with DOX (median of four technical replicates
+STD).

(B) p53 protein levels after lincRNA-p21 and p53
knockdown from cells treated as in (A). BActin

‘ levels are shown as loading control.

S incANA

(C) Many genes are corepressed by lincRNA-p21
and p53. Top: Venn diagram of differentially ex-
pressed genes (FDR < 0.05) upon p53 knockdown
(left) or lincRNA-p21 knockdown (right); cells were
‘ treated as in (A) and subjected to microarray anal-
ysis. Bottom: expression level of genes in lincRNA-
20% p21 and p53 siRNA-treated cells relative to control
| siRNA experiments. Expression values are dis-
P<107® played in shades of red or blue relative to the
global median expression value across all experi-

ments (linear scale).
(D) Genes derepressed by lincRNA-p21 and p53
knockdown overlap with the genes repressed by
p53 restoration in the MEF and KRAS systems.
The black line represents the observed enrichment
S score profile of genes in the lincRNA-p21/p53
k\\ derepressed gene set to the MEF or KRAS gene

~ sets, respectively.

(E) Genes corregulated by lincRNA-p21 and p53
are part of the p53 biological response. Examples
of genes affected by lincRNA-p21 and/or p53
siRNA-knockdown (FDR < 0.05). Downregulated
and upregulated genes are indicated with blue
arrows and red lines respectively.

See also Figure S3 and Table S2.

siRNA

-8 I o +8

CELL CYCLE ARREST

increase in viability after DNA damage of cells treated with
siRNAs targeting either lincRNA-p21 or p53 compared to those
treated with the control siRNA pool (Figures 4A and 4B). The
increase in viability was greater for knockdown of p53, but was
still highly significant for knockdown of lincRNA-p21 (p < 0.01).
We observed similar results when using three individual siRNA
duplexes targeting lincRNA-p21, as well as two different control
siRNA pools (Figure 4B and Figures S4A-S4C). These results
suggest that lincRNA-p21 plays a physiological role in regulating
cell viability upon DNA damage in this system, although they do
not discriminate whether the effect is due to misregulation of the
cell cycle or apoptosis.

To distinguish between these two possibilities, we first exam-
ined whether cell-cycle regulation in response to DNA damage is
affected by knockdown of p53 and lincRNAp-21. Specifically,
we assayed 5-bromo-2-deoxyuridine (BrdU) incorporation and
propidium iodide staining of the cells by fluorescence-activated
cell sorting (FACS) analysis. Consistent with the ability of p53
to inhibit cell-cycle progression, knockdown of p53 caused a
significant increase in BrdU incorporation in response to DNA
damage (p < 0.01). In contrast, knockdown of lincRNA-p21
showed no significant changes in either BrdU levels or in the
percentages of cells in any of the cell-cycle phases (S, G1, or
G2) with or without dox treatment (Figure 4C). These results
suggest that lincRNA-p21 does not substantially contribute to
cell-cycle arrest upon DNA damage.
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We then examined the impact of lincRNA-p21 and p53 knock-
downs on apoptosis. To this end, we assayed the proportion of the
cell population undergoing apoptosis by measuring Annexin-V by
FACS analysis. We observed a significant decrease in the number
of apoptotic cells after DNA damage in both the lincRNA-p21 and
p53 depleted cells relative to the siRNA control (p < 0.01) (Figures
4D and 4E). We also observed a decrease in Caspase 3 cleavage
after knockdown of both p53 or lincRNA-p21, relative to controls
(Figure 4F). We next sought to determine whether, conversely to
lincRNA-p21 knockdown, the enforced expression of lincRNA-
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Figure 4. LincBRNA-p21 Is Required for
Proper Apoptotic Induction

(A) Increased cell viability of lincRNA-p21-
depleted cells. Relative number of siRNA-trans-
fected MEFs treated with 400 nM DOX from
24 hr after transfection (right) or untreated (left)
determined by MTT assay.

(B) Knockdown of lincRNA-p21 with individual
siRNAs increases cell viability. Images of MEFs
treated with different individual siRNAs after
48 hr of DOX treatment (72 hr after transfection).
(C) LincRNA-p21 knockdown doesn’t affect cell-
cycle regulation. Relative cell numbers in each
cell-cycle phase determined by FACS of BrdU
incorporation and Pl staining of MEFs treated as
in (A). Numbers inside bars represent percentages
of cells in each phase.

(D) LincRNA-p21 knockdown causes a decrease
in cellular apoptosis. p53-reconstituted p53-SL/-S-
MEFs transfected with three individual siRNAs
targeting lincRNA-p21 (bottom), two independent
control siRNAs (upper left and middle) or a siRNA
pool targeting p53 (upper right). Twenty-four hours
after transfection, cells were treated with 400 nM
doxorubicin and 14 hr later were harvested and
subjected to FACS analysis. The x axis represents
Annexin-V and the y axis 7-AAD staining. The
percentage of cells in each quadrant is indicated.

Cleaved
caspase 3

(E) Decreased apoptosis caused by lincRNA-p21
knockdown. Percentage of Annexin-V-positive
cells (FACS) at 38 hr after transfection (14 hr of
400 nM DOX treatment) in MEFs treated as in (A).
(F) LincRNA-p21 knockdown in p53-reconstituted
p53-SHLSL MEFs causes decrease in Caspase 3
cleavage. Levels of cleaved Caspase 3 or control
BActin in p53 reconstituted-p53-S“St  MEFs
treated with the indicated siRNA pools and
500 nM DOX for 14 hr.

(G) Decreased cell viability caused by lincRNA-p21
overexpression. Relative numbers of LKR cells
overexpressing lincRNA-p21 or control plasmid
determined by MTT assay.

(H) Overexpression of lincRNA-p21 causes cellular
apoptosis under DNA damage induction. Per-
centage of Annexin-V-positive LKR cells overex-
pressing lincRNA-p21 or control vector treated
with 500 nM DOX.

() LincRNA overexpression doesn’t affect cell-
cycle regulation. Cell-cycle analysis of DOX-
treated LKR cells overexpressing lincRNA-p21 or
control plasmid.

All values are the average of 3 biological replicates
(£STD). * p < 0.01 relative to controls.

Also see Figure S4.

BActin

- control vector
o lincRNA-p21

p21 would result in an increased apoptosis. Indeed, lincRNA-
p21 overexpression in a lung cancer cell line harboring a KRAS
mutation (referred to as LKR) and in NIH/3T3 MEFs caused a sig-
nificant decrease in cell viability (Experimental Procedures, Fig-
ure 4G, and Figure S4E). This decrease in viability was due to
increased apoptosis in response to DNA damage (p < 0.01) and
not to an effect in cell-cycle regulation (Figures 4H and 41 and
Figure S4G). Together, these results demonstrate a reproducible
and similar reduction of apoptotic cells in response to DNA
damage in both lincRNA-p21 and p53 knockdown experiments.
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Figure 5. LincRNA-p21 Physically Interacts
with hnRNP-K

(A) Schematic representation of RNA pulldown
experiments to identify associated proteins. Bioti-
nylated lincRNA-p21 or antisense RNA were incu-
bated with nuclear extracts, targeted with strepta-
vidin beads, washed, and associated proteins
resolved in a gel. Specific bands were cutout and
identified by mass spectrometry.

(B) LincRNA-p21 and hnRNP-K specifically
interact in vitro. SDS-PAGE gel of proteins bound
to lincRNA-p21 (right lane) or antisense RNA (left
lane). The highlighted region was submitted for
mass spectrometry identifying hnRNP-K as the
band unique to lincRNA-p21.

(C) Western blot analysis of the specific associa-
tion of hnRNP-K with lincRNA-p21. A nonspecific
protein (NONO) is shown as a control.

(D) Association between endogenous lincRNA-
p21 and hnRNP-K in the nucleus of DNA damaged
MEFs in native conditions. RNA Immunoprecipita-
tion (RIP) enrichment is determined as RNA asso-
ciated to hnRNP-K IP relative to IgG control.

(E) Physical association between lincRNA-p21 and
hnRNP-K after chemical crosslinking of life cells.
hnRNP-K was immunoprecipitated from nuclear
extracts of formaldehyde-crosslinked DNA-dam-
aged MEFs, and associated RNAs were detected
by RT-qPCR. The relative enrichment is calcu-
lated as in (D) and is the median of three techni-
cal replicates of a representative experiment

5778 nt + - (+STD)

Fulllength  + + T . )
326330t - - (F) LincRNA-p21 binds hnRNP-K through its 5
31geont - - - terminal region. RNAs corresponding to dif-

ferent fragments of lincRNA-p21 or its antisense

sequence (middle and bottom) were treated as in (A) and associated hnRNP-K was detected by western blot (top).
(G) Percentage of Annexin-V-positive LKR cells overexpressing the indicated lincRNA-p21 fragments or empty vector as control (average of three replicates

[+STD]). * p < 0.001.
See also Figure S5.

Although MEFs typically respond to DNA damage by under-
going cell-cycle arrest rather than apoptosis (Kuerbitz et al.,
1992), several additional lines of evidence are consistent with
the observed apoptosis phenotype in response to knockdown
on p53 and lincRNA-p21. First, certain critical cell-cycle regula-
tors, such as Cdkn1a/p21, Cdkn2a, and Reprimo, are regulated
by p53 but not lincRNA-p21. For example, knockdown of
lincRNA-p21 perturbs neither the transcript levels of Cdkn1a/
p21 nor the protein stability (Figure S3E); this may explain why
lincRNA-p21 knockdown is insufficient to cause a cell-cycle
phenotype, yet the p53 knockdown is. Second, we observed
that both lincRNA-p21 and p53 knockdowns resulted in the
repression of apoptosis genes (Noxa and Perp) and derepres-
sion of cell survival genes (Bcl2/3, Stat3, and Atf2, among others)
(Figure 3E and Table S2). Moreover, the decrease of apoptotic
cells in response to knockdown of lincRNA-p21 was comparable
to that caused by knockdown of p53 (Figures 4D and 4E and
Figures S4D and S4E). Third, the apoptosis phenotype is depen-
dent on the dosage of dox-induced DNA damage (Figure S4D).
Thus, the apoptosis response is both p53 dependent and
lincRNA-p21 dependent, with this dependence confirmed in
multiple cell types and conditions (Figures 4B, 4D, 4F, and 4H
and Figures S4A-S4C). Collectively, these observations demon-

strate that lincRNA-p21 plays an important role in the p53-
dependent induction of cell death.

LincRNA-p21 Functions through Interaction

with hnRNP-K

We next wanted to investigate the mechanism by which
lincRNA-p21 mediates transcriptional repression. We have
recently reported that many lincRNAs regulate gene expression
through their interaction with several chromatin regulatory com-
plexes (Khalil et al., 2009). Thus, we hypothesized that lincRNA-
p21 could affect gene expression in a similar manner.

To test this, we first performed nuclear fractionation experi-
ments and confirmed that lincRNA-p21 is enriched in the nucleus
(Figure S5A). We next sought to identify proteins that are associ-
ated with lincRNA-p21 by an RNA-pulldown experiment. Specif-
ically, we incubated in vitro-synthesized biotinylated lincRNA-
p21 and antisense lincRNA-p21 transcripts (negative control)
with nuclear cell extracts and isolated coprecipitated proteins
with streptavidin beads (Experimental Procedures). We resolved
the RNA-associated proteins on a SDS-PAGE gel, cut out the
bands specific to lincRNA-p21, and subjected them to mass
spectrometry (Figures 5A and 5B). In all six biological replicates,
mass-spectrometry analysis identified heterogeneous nuclear
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ribonucleoprotein K (hnRNP-K) as specifically associated with
the sense (but not antisense) strand of lincRNA-p21. We inde-
pendently verified this interaction by western blot analysis
(Figure 5C). hnRNP-K has been shown to play various roles in
the p53 pathway (Kim et al., 2008; Moumen et al., 2005). Interest-
ingly, among these roles, Kim et al. (2008) demonstrated that
hnRNP-K is a component of a repressor complex that acts in
the p53 pathway, consistent with our evidence that lincRNA-
p21 plays a role in global repression in this pathway.

To further validate the interaction between lincRNA-p21 and
hnRNP-K in our cell-based systems, we performed RNA immu-
noprecipitation (RIP) with an antibody against hnRNP-K from
nuclear extracts of MEFs subjected to DNA damage. We
observed an enrichment of lincRNA-p21 (but not other unrelated
RNAs) with hnRNP-K antibody as compared to the nonspecific
antibody (IgG control) (Figure 5D). We further performed analo-
gous RIP experiments with formaldehyde crosslinked cells
followed by stringent washing conditions (Ule et al., 2005) to
rule out potential nonspecific interactions. Consistent with
a bona fide interaction, we observed a greater and very signifi-
cant enrichment of lincRNA-p21 in the hnRNP-K RIP relative to
the 1gG control RIP with two hnRNP-K different antibodies
(Figure 5E).

We further performed deletion-mapping experiments to deter-
mine whether hnRNP-K interacts within a specific region of
lincRNA-p21. To this end, we carried out RNA pulldown experi-
ments with truncated versions of lincRNA-p21 followed by
western blot detection of bound hnRNP-K. These analyses
identified a 780 nt region at the 5’ end of lincRNA-p21 required
for the interaction with hnRNP-K (Figure 5F). Interestingly, RNA
folding analyses of this region based on sequence conservation
and compensatory changes across 14 mammalian species
(Hofacker, 2003) predict a highly stable 280 nt structure of
lincRNA-p21 with deep evolutionary conservation (Figures S5B
and S5C). Together, the RNA pulldown, native RIP, crosslinked
RIP, and deletion mapping results demonstrate a specific asso-
ciation between hnRNP-K and lincRNA-p21.

We next sought to determine the functional relevance of the
interaction between lincRNA-p21 and hnRNP-K. To do so, we
monitored the ability of different truncated versions of lincRNA-
p21 to induce cellular apoptosis when overexpressed in LKR
cells (Experimental Procedures). This revealed that the deletion
of the 5’ end of lincRNA-p21, which mediates the hnRNP-K inter-
action, abolishes the ability of lincRNA-p21 to induce apoptosis
(Figure 5G). Interestingly, the 780 nt fragment at the 5’ end of
lincRNA-p21 alone does not induce apoptosis, indicating that
this fragment is required but not sufficient for incRNA-p21-medi-
ated cellular apoptosis.

We hypothesized that hnRNP-K is required for proper tran-
scriptional repression of target genes shared between p53 and
lincRNA-p21. If so, knockdown of hnRNP-K should result in
derepression of these shared targets. We tested this hypothesis
by performing siRNA-mediated knockdown of hnRNP-K,
lincRNA-p21, and p53 in p53-restored p53-S"SL MEFs, treating
the cells with dox and profiling the changes in gene expression
by microarray analysis.

Consistent with our previous data, we observed a strong over-
lap of 582 genes affected in the hnRNP-K, lincRNA-p21, and p53
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knockdowns (FDR < 0.05) (Figure 6 and Figure S6). Remarkably,
83% of these common genes were derepressed in all three
knockdown experiments (Figure 6A and Figure S6D). The genes
previously identified as coregulated by lincRNA-p21 and
p53 also were strongly enriched (GSEA FDR < 10~%) among
those regulated by hnRNP-K (Figure 6B and Table S3). Thus,
lincRNA-p21 and hnRNP-K play roles in repressing a significant
common set of genes in the p53-dependent response to DNA
damage.

We further reasoned that if hnRNP-K is involved in the repres-
sion of genes corepressed by p53 and lincRNA-p21, then
hnRNP-K might also be physically bound to the promoters of
these genes. To test this, we performed ChIP experiments with
antibodies against hnRNP-K, followed by hybridization to DNA
tiling microarrays covering 30,000 gene promoters. We identified
1621 promoter regions with significant occupancy by hnRNP-K
(FDR < 0.05) (Figure 6 and Table S3). Notably, these promoter
regions exhibit a significant overlap with genes that were differ-
entially expressed upon hnRNP-K knockdown (GSEA FDR <
0.001) (Figure S6E). Moreover, hnRNP-K localizes to a significant
fraction (FDR < 0.001) of the genes corepressed by lincRNA-p21
and p53 (Figure 6C), suggesting that these are primary sites of
hnRNP-K regulation.

We next wanted to determine whether lincRNA-p21 plays
a role in hnRNP-K localization at promoters of p53-repressed
genes. To this end, we determined whether siRNA-mediated
knockdown of lincRNA-p21 affected the localization of hnRNP-K
after induction of p53. Specifically, we performed hnRNP-K
ChIP in dox-treated p53-restored p53-SY“S- MEFs transfected
with either siRNAs targeting lincRNA-p21 or nontargeting con-
trol siRNAs. These experiments revealed that the depletion of
lincRNA-p21 causes a significant reduction in the association
of hnRNP-K at the promoter regions of genes that are normally
repressed in a lincRNA-p21- and p53-dependent fashion, as
determined by ChIP-gPCR (Figure 6D). Specifically, 12 of the
15 tested promoter regions exhibited loss of hnRNP-K enrich-
ment, in two biological replicate experiments, upon depletion
of lincRNA-p21. Thus, hnRNP-K is bound to the promoters of
genes that are normally repressed in a p53- and lincRNA-p21-
dependent manner, and this localization requires lincRNA-p21.

Collectively, our results indicate that lincRNA-p21 is a direct
p53 transcriptional target in response to DNA damage, acts to
repress genes that are downregulated as part of the canonical
p53 transcriptional response, is necessary for p53 dependent
apoptotic responses to DNA damage in our cell-based systems,
and functions at least in part through interaction with hnRNP-K
by modulating hnRNP-K localization.

DISCUSSION

It is clear that mammalian genomes encode numerous large
noncoding RNAs (Carninci, 2008; Guttman et al., 2009; Mattick,
2009; Ponjavic et al.,, 2007). Here, we demonstrate that
numerous lincRNAs are key constituents in the p53-dependent
transcriptional pathway. Moreover, we observed that some of
these lincRNAs are bound by p53 in their promoter regions and
sufficient to drive p53-dependent reporter activity that requires
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Figure 6. LincRNA-p21 and hnRNP-K Corepress Genes in the p53
Transcriptional Response

(A) Many genes are coregulated by p53, lincRNA-p21, and hnRNP-K. Genes
affected by knockdown of lincRNA-p21, p53, or hnRNP-K in p53-restored-
DNA-damaged p53-SYS- MEFs determined by microarray analysis (FDR <
0.05). Shades of red or blue represent expression values relative to global
median across experiments. Percentages of up- and downregulated genes
are indicated.

(B) Genes repressed by lincRNA-p21 are significantly enriched in genes
repressed by p53 and hnRNPK. GSEA comparing the genes upregulated on
knockdown of LincRNA-p21 and those upregulated upon knockdown of p53
(left) or hnRNP-K (right). The black line represents the observed enrichment
score profile of genes in the lincRNA-p21 gene set to the p53 or hnRNP-K
gene sets, respectively.

(C) hnRNP-K associates to promoters of genes corepressed by lincRNA-p21
and p53. Examples of promoters of genes repressed by p53 and lincRNA-
p21 (G2e3, Mtap4, Suv39h1, and Vcan) or repressed by lincRNA-p21
but not p53 (Rb1) bound by hnRNP-K (blue) determined by ChIP-chip of
hnRNP-K in dox-trated p53-reconstituted p53-SY-S MEFs (FDR < 0.05).
Cdkn2a and Wt1 are negative controls (gray).

(D) hnRNP-K binding to lincRNA-p21 and p53 corepressed genes is depen-
dent on lincRNA-p21. Relative enrichment of hnRNP-K (ChIP-gPCR) in the
indicated promoter regions in p53-reconstituted p53-SY-- MEFs transfected
with siRNA lincRNA-p21 or siRNA control and dox-treated determined by
ChIP-gPCR (representative of two biological replicates shown +STD).

(E) Proposed models for the function of licRNA-p21 in the p53 transcriptional
response. Induction of p53 activates the transcription of lincRNA-p21 by
binding to its promoter (upper left). LincRNA-p21 binds to hnRNP-K, and this
interaction imparts specificity to genes repressed by p53 induction (upper right).
See also Figure S6 and Table S3.

the consensus p53-binding motif, suggesting that these
lincRNAs are bona fide p53 transcriptional targets.

Having discovered multiple lincRNAs in the p53 pathway, we
decided to focus on one such lincRNA in particular: lincRNA-
p21. Intrigued by its properties (genomic location upstream of
p21, p53-dependent activation requiring the consensus p53
motif, which is bound by p53 and conserved p53-dependent
activation of this gene in both human and mouse cell-based
systems), we explored the functional roles of lincRNA-p21. Our
studies revealed a role for lincRNA-p21 in a p53-dependent
apoptotic response after DNA damage.

We further observed that siRNA-mediated inhibition of lincRNA-
p21 affects the expression of hundreds of gene targets that are
enriched for genes normally repressed by p53 in both the MEF
and RAS cell-based systems. Strikingly, the vast majority of these
common target genes are derepressed upon inhibition of either
p53 or lincRNA-p21—suggesting that lincRNA-p21 functions as
a downstream repressor in the p53 transcriptional response.

We gained mechanistic clues into how lincRNA-p21 functions
to repress such a large subset of the p53 transcriptional
response by biochemical experiments that identified a specific
interaction between lincRNA-p21 and hnRNP-K. This interaction
is supported by RNA-pulldown, native RIP, crosslinked RIP, and
deletion-mapping experiments. Moreover, we identified a 780 nt
5’ region of lincRNA-p21 that is required for hnRNP-K binding
and subsequent induction of apoptosis. Interestingly, this region
is much more highly conserved than the remainder of the tran-
script. This suggests that patches of conservations, previously
determined to be unique to lincRNAs, (Guttman et al., 2009),
may point to functional elements for binding interactions within
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lincRNAs (as was also recently determined for Xist binding to
PRC2) (Zhao et al., 2008).

hnRNP-K is known to interact with other repressive complexes
such as the Histone H1.2 or members of the Polycomb-group
(PcG) (Kim et al., 2008; Denisenko and Bomsztyk, 1997). The
physical interaction between lincRNA-p21 and hnRNP-K is likely
required for lincRNA-p21-mediated gene repression, as loss of
hnRNP-K function results in the derepression of the same genes
that are repressed by both p53 and lincRNA-p21. Importantly,
genome-wide ChIP-chip analysis revealed hnRNP-K binding at
the promoters of these corepressed gene loci, suggestive of direct
regulation by hnRNP-K and lincRNA-p21. Moreover, we observed
alincRNA-p21 dependent binding of hnRNP-K at several of these
corepressed promoter regions. While hnRNP-K has been previ-
ously shown to activate one gene in the p53 pathway (Moumen
et al., 2005), our analyses suggest that it plays a much more
widespread role in repression. Together, these results implicate
lincRNA-p21 as an important repressor in the p53 pathway, by
interacting with and modulating the localization of hnRNP-K.

Our results raise the possibility that many transcriptional
programs (beyond the p53-pathway) may involve inducing
protein factors that activate specific sets of downstream genes
and lincRNAs that repress previously active sets of genes. The
notion of a noncoding RNA being involved in silencing-specific
gene loci is consistent with our recent observation that many
lincRNAs (including lincRNA-p21) bind to chromatin complexes
(such as PRC2) and are required to mediate repression at key
gene loci (Khalil et al., 2009). Moreover, there are several exam-
ples of lincRNAs involved in repression of known target genes—
including HOTAIR-dependent repression of HOXD genes (Rinn
et al., 2007) and XIST, AIR, and KCNQ10T1, involved in genomic
imprinting and silencing of several genes in cis (Nagano et al.,
2008; Pandey et al., 2008; Zhao et al., 2008).

The precise mechanism by which lincRNA-p21 contributes to
repression at specific loci remains to be defined. Various possi-
bilities include that (1) lincRNA-p21 might direct a protein
complex to specific loci by Crick-Watson base pairing; (2)
lincRNAs might act by forming DNA-DNA-RNA triple-helical
structures, which do not require Crick-Watson base-pairing,
such as reported for a large noncoding RNA that forms a
triple-helix upstream of the Dihydrofolate Reductase (DHFR)
promoter resulting in repression of DHFR (Martianov et al.,
2007); or (3) lincRNAs might alter the binding specificity of
DNA-binding proteins (such as hnRNP-K) to influence their target
preference (Figure 6D). Further experiments are needed to
distinguish between these and other possibilities.

Aside from the general interest in gene regulation, we note that
lincRNA-p21 and several other lincRNAs function in an important
pathway for cancer. It is tempting to speculate that other
lincRNAs may also play key roles in numerous other tumor-
suppressor and oncogenic pathways, representing a hitherto
unknown paradigm in cellular transformation and metastasis.
It will be important for future studies to determine whether
lincRNAs genes can serve as tumor suppressor genes or
oncogenes.

In summary, lincRNAs may point to new mechanisms of gene
regulation, components in disease pathways and potential
targets for the development of therapies.
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EXPERIMENTAL PROCEDURES

Cell Lines and In Vivo Models

KRAS lung tumor-derived cell lines were isolated from individual tumors (D.F.
and T.J., unpublished data). Isolation of matched p53*/* and p53~/~ MEFs,
p53-SYLSL MEFs, lymphomas, and sarcomas, and p53 restoration were
done as described (Ventura et al., 2007). Primary WT MEFs and NIH/3T3
MEF cells were purchased from ATCC. Transfection, infection, and treatment
conditions are described in the Extended Experimental Procedures.

Promoter Reporter Assays

LincRNA promoters were cloned into pGL3-basic vector (Promega), and motif
deletions were performed by mutagenesis. p53-reconstituted or control
p53-SYLSL MEFs were transfected with 800 ng pGL3 and 30 ng TK-Renilla
plasmid per 24-well. Twenty-four hours later, cells were treated with 500 nM
dox for 13 hr, and cell extracts were assayed for firefly and renilla luciferase
activities (Promega E1910).

LincRNA and Gene-Expression Profiling and Informatic Analyses
RNA isolation, lincRNA expression profiling, and ChIP-chip analyses (Nimble-
gen arrays), as well as Affymetrix gene-expression profiling and analyses, were
performed as described (Guttman et al., 2009) (Extended Experimental Proce-
dures). Structure predictions were performed using the Vienna RNA package
(Hofacker, 2003).

Antibodies

The following antibodies were used: anti-p53, Novocastra (NCL-p53-CM5p)
(western blot) and Vector Labs (CM-5) (ChIP); anti-hnRNP-K, Santa Cruz
Biotechnology (sc-25373) (western blot) and Abcam (Ab70492 and Ab39975)
(ChIP and RIP); and control rabbit IgG Abcam (Ab37415-5) (RIP and ChIP-
chip).

Viability and Apoptosis Assays and Cell-Cycle Analysis

MTT assays were performed with Cell Proliferation Kit | from Roche
(11465007001). For apoptosis quantification, the Apoptosis Detection Kit |
from BD Biosciences (cat#559763) and FACS (van Engeland et al., 1996)
were used. Cell-cycle analysis was performed as described (Brugarolas
et al., 1995).

Cloning, RNA Pulldown, Deletion Mapping, RIP, and ChIP

5’ and 3’ RACE cloning of lincRNA-p21 were performed from total RNA of dox-
treated MEFs with RLM-RACE Kit (Ambion). RNA pulldown and deletion
mapping were performed as described (Rinn et al., 2007) with 1 mg mESC
nuclear extract and 50 pmol of biotinylated RNA. Mass spectrometry was per-
formed as described (Shevchenko et al., 1996). Native RIP was carried out as
described (Rinn et al., 2007). For crosslinked RIP, cells were crosslinked with
1% formaldehyde, antibody incubated overnight, recovered with protein G
Dynabeads, and washed with RIPA buffer. After reverse crosslink, RNA was
analyzed by qRT-PCR. p53 ChIP and hnRNP-K ChIP experiments were per-
formed as previously described (Rinn et al., 2007) (Extended Experimental
Procedures).

RNA Interference and LincRNA-p21 Overexpression

siRNA transfections were done with 75 nM siRNA and Lipofectamine 2000
(Invitrogen). For overexpression, lincRNA-p21 or truncated forms were cloned
into the pBABE vector. After transfection, cells were selected with 2 pg/ml
puromycin.

ACCESSION NUMBERS

The accession number for the full-length mouse lincRNA-p21 sequence
reported in this paper is HM210889 (bankit1350506). All primary data are avail-
able at the Gene Expression Omnibus (GSE21761).
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EXTENDED EXPERIMENTAL PROCEDURES

Cell Lines, p53 Restoration and DNA Damage Induction

Lung tumor-derived cell lines were isolated from individual tumors from KrasLA2/+; Trp53LSL/LSL Rosa26CreERT2 animals (D.F.
and T.J., unpublished data). Lymphomas and Sarcomas were isolated when they formed in Trp53LSL/LSL Rosa26CreERT2 animals
as described (Ventura et al., 2007). For p53 restoration, cultured tumor cell lines were incubated with 500nM 4-hydroxytamoxifen
(Sigma) for the indicated time points and p53-SY-S- MEFs, were infected with AdenoCre virus or AdenoGFP for 24h (University of
lowa) at moi of 5. For DNA damage, cells were treated with 100 to 500nM doxorubicin hydrochloride (Sigma D1515).

RNA Purification and qRT-PCR Analysis

Total RNA from cells was isolated using Trizol reagent (Invitrogen) and purified with RNeasy kit (QIAGEN) following manufacturers
instructions. Reverse Transcription was performed using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and
real time PCR was performed with SYBR green master mix (Roche). Gapdh RNA levels were used for normalization.

qPCR Primers
gRT-PCR and ChIP-gPCR primer sequences are listed in Table S4.

LincRNA and Protein Coding Gene Expression Profiling

High resolution DNA tiling arrays were designed on the Nimblegen platform to represent a random sampling of ~400 lincRNAs iden-
tified in the mouse genome. Total RNA from different experimental conditions was amplified using poly-dT and labeled as described
(Guttman et al., 2009).

Identifying Differentially Expressed lincRNAs

We designed custom Nimbelgen tiling microarrys which tile the exonic regions of each mouse lincRNA at 10bp resolution. To identify
lincRNAs that were differentially expressed in these conditions, we first determined which lincRNAs are significantly expressed in
each sample. We then used this set of expressed lincRNAs to test for differential expression.

To determine expressed lincRNAs we used our previously developed statistical algorithm to identify peaks in hybridization. We first
normalized the data by dividing each probe value by the average probe intensity across the array. We scanned each region and
computed a score defined as the sum of the normalized probe intensities. To determine the significance of this score we permuted
the intensity values assigned to each probe and recalculated the statistic. We took the value for each permutation as the maximum
score obtained for any random region. We performed 1000 permutations and assigned a multiple testing corrected p-value to each
region based on its rank within this distribution. All exons with a p-value less than 0.05 were retained.

We computed differentially expressed exons by extending the above strategy but computed a t-statistic between each group (ie
Ohr versus 8hr). We assessed a multiple testing corrected p-value by permuting the probe values across all conditions and recom-
puting the t-statistic. We performed 1000 permutations and generated a maximum distribution for each permutation and assigned
FWER corrected p-values. We retained all exons with p-values < 0.05.

We performed post-processing of these results to ensure robust differential lincRNAs. Specifically, for MEF time course we
required that a lincRNA exon was differentially expressed between P53** and P53/~ cells and also differentially expressed between
any time point and time 0. For the KRAS experiment we required that any differential exon be differentially expressed in 2 consecutive
time points compared to time 0.

p53 Chromatin Immunoprecipitation

p53*"* or p53~/~ MEFs were treated with 0.2 mM/ml doxorubicin for 6 hr, crosslinked with Formaldehyde (10 min at 1%), harvested
and washed once with Farnham lysis buffer (5 mM PIPES pH 8.0, 85 mM KCl, 0.5% NP-40, supplemented with Roche protease inhib-
itor cocktail). The nuclear pellet was resuspended in RIPA buffer (1 x PBS, 1% NP-40, 0.5% Na-deoxycholate, 0.1% SDS supple-
mented with Roche protease inhibitor cocktail) and sonicated. Antibodies were coupled to PBS/BSA (5mg/ml) blocked Dynabeads
overnight. After overnight incubation of the sonicated chromatin with the antibody-coupled beads, the beads were washed 5 x with
LiCl wash buffer (100 mM Tris pH 7.5, 500 mM LiCl, 1% NP-40, 1% Na-deoxycholate) and 1 x with TE (10 mM Tris pH 7.5, 0.1 mM
Na,EDTA). The ChiPed DNA was eluted for 1 hr at 65°C in Elution buffer (1% SDS, 0.1 M NaHCOQO3), reverse X-linked, purified and
analyzed by gPCR.

Protein Coding Gene Expression Profiles

We generated expression profiles for protein coding gene expression using Affymetrix 430 2.0 arrays. We identified differentially ex-
pressed genes using the Patterns from Gene Expression (http://www.cbil.upenn.edu/PaGE/) program. Briefly, we determined differ-
ential expression using a t-statistic between groups and permutation distribution to compute an FDR for each gene. We filtered all
genes with an FDR < 0.05 as significantly differentially expressed. We filtered the list by genes similar to the criteria used for the
lincRNA (tiling arrays). We required differential expression between P53+ and P53/~ for each time point and differential expression
compared to time 0. For the RAS experiment we required differential expression of each gene for at least 2 consecutive time points.
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Gene Set Enrichment Analysis and Functional Term Clustering

Gene Set Enrichment Analysis was performed as previously described (Grant et al., 2005, Subramanian et al., 2005). Briefly, we used
each condition as a group (ie siLincRNA-p21 versus siControl) and ranked the gene list based on differential expression between the
groups. The rank of these genes was used to identify significant gene sets, using the weighted Kolmogorov-Smirnov (KS) test (Grant
et al., 2005). Gene sets were permuted 1000 times to obtain FDR corrected p-values. We used gene sets representing the Molecular
Signatures Database or custom gene sets defined by other experiments.

Chromatin Map Data
Chromatin data for H3K4me3 and H3K36me3 for mouse embryonic stem cells (MESCs) mouse were taken from Mikkelsen et al.,
2007 and were downloaded from (ftp://ftp.broad.mit.edu/pub/papers/chipseq/).

p53 Motif Analysis

To scan for conserved motifs in putative P53 targets we used an extension of the a method that scores conservation at single nucle-
otide resolution based on the evolutionary substitution pattern inferred for the site (Garber et al., 2009). Motifs were represented by
Position Weight Matrix (PWM) downloaded from the TRANSFAC matrix database v8.3 (http://www.gene-regulation.com/pub/
databases.html) (Garber et al., 2009). Given a PWM, for each nucleotide position in a promoter, we calculated an affinity score
defined as the log likelihood (LOD score) for observing the sequence given the PWM versus a given random genomic background.
We then found the best conserved motif instance over the entire promoter region for each PWM. An instance was considered
conserved if its conservation score was in the top 5% of the genome distribution.

We computed this score for each lincRNA promoter and computed enrichment of the motif for our experimentally determined set
compared with all incRNA promoters. To ensure that enrichment was not due to nucleotide bias within the promoter, we shuffled the
PWM and computed enrichment for the true PWM compared to the shuffled PWMs. Enrichment was computed using a two-sided
Wilcoxon rank-sum test between the set and the background. We then computed an FDR to correct for testing of multiple PWMs.

RNA Interference and LincRNA-p21 Overexpression

siRNA oligos targeting lincRNA-p21 (#1 UGAAAAGAGCCGUGAGCUA, #2 AAAUAAAGAUGGUGGAAUG and #3 AGUCAAAGGC
AAUGAGCAU) and hnRNP-K (siRNA smart pool M-048002) were purchased from Dharmacon. p53 siRNAs (#1 AGAAGAAA
AUUUCCGCAAA and #2 ACAGCGUGGUGGUACCUUA) were purchased from Ambion. Non-targeting siRNAs were purchased
from Dharmacon (D-001206-14) and Ambion (AM4636). siRNA transfections were done with 75nM of siRNA and Lipofectamine
2000 (Invitrogen) following manufacturer’s instructions. For overexpression, LincRNA-p21 was cloned into the pBABE vector and
after transfection cells were selected with 2mg/ml puromycin for 8 days. For gene expression profiling of lincRNA-p21 overexpres-
sion, pBABE plasmid expressing lincRNA-p21 or empty vector were transfected into p53-reconstituted p53-S--- MEFs and 24 hr
later treated with 500nM doxorubicin. 14h after treatment total RNA was extracted for microarray analysis.

Nuclear Fractionation

For nuclear fractionation 107 cells were harvested and resuspended in 1ml of PBS, 1ml of buffer C1 (cell lysis buffer, QIAGEN) and 3ml|
of water, and incubated for 15 min on ice. Then cells were centrifuged for 15 min at 2,500 rpm, the supernatant was discarded and the
nuclear pellet was kept for RNA extraction.

LincRNA-p21 Sequence
Sequence of the lincRNA-p21 full length clone from doxorubicin-treated mouse embryonic fibroblast:

> lincRNA-p21
TGGCAGTCTGACCCACACTCCCCACGCCCAGGACCAAGTCGCCTGAGCCCCATAGCCACAACTCTCTGCCGGLCCTTGCCCGGGCTTGCCTT
CGGTTGCATCATCTCCCAGCTTTGCCAGGGGTGCAGAAGTGAACCACCCACTCAGCGCTGGAAAAACCAGCTAATTATATCTCCAAAGAC
CCAGGGCAAGAACTTGTGGACAACCTCAGCTGGCCTGGCCTGTCCCACTCGCTTTCCATTTCCCCCCACCCTGAGACAGGATGCCACTGTG
TAGCCCAGTGTAGTGAACACTTGGAATACAAAATAAAGATGGTGGAATGAGACATTCCGTCTCCAGTTCCTAACATCAGAAGTGAGCACCT
GTGTGTCACCAGCAACATATTGGAGGCCAGCTGCCTACACCAATCAGAAACAGGGACCACAAAGTCTGCAGGGGTGAGATAGGCCTTTTC
AGTGTCTACGATTTCATCATGGACATTACTGTCGATTTCTCTTCCTGCCCCTGTATGTGCGGGTCTATCGCCATCTCGCCATCTCCGGCT
CCTGTGTTATGAAGACAGTCTCATGCAGCCCAGACCAATCTCAAATTGACTAGGTAAACTGAGGCTGGCCTTGAACCAGTCCCTCCTGCC
TCTATCTCCTGAGAGCTGGGTAACAGCTTCTGGAGCCTCACCCAGCTTCGCTTTCACCACCCCAGCCAATCCTGTGACTCCTCTTCATAG
CGAGAGCATTGACACTTATGTTCTGAGTGTGAAAAAAAAAAAAAAATCACATAGTACTTCCTACTAGAACCTTGCCCGGGTCAACTGAAG
TGTGTGTGTTTGCTTACCAGTCTGCAGGTTTGCTTAAGTTTGTTTATTTTAGAGACCAGGTCTTGCTCTGTTGCCTAAGCCAACTTGAAAC
TCTTGGGCTCCAACAGTTCTCCTGCTCCATCTTTCTAGAGCAGCTGGGACTCTAGGCATGCTCCACTACAGCTGACTGAAGCTTGAATGAA
TGAATGAATGAATGAATGAGTTACTACCTCTGAGGGACCCTCCTCATGGCCTTCTCAACTCTGTACTTTAATTAGTTGCTTAGAGGTGTCT
CCATGCCTCAGTTTCCCCATCTGTAATAGTAAACGAGTTCACAGGCGTGGTCTGTGCTTGGAGCAAGAACAAAACCATCCTGGCCTATACT
CTCTAGGGACTCTACAGAGCCCATCCCTTTGGCTATCAGACTGTTGAGATAAAGGTTCCCCCAGGAATCGGAATCCCCTCCGACAGGAGTC
TCATGCTCAGAGAAGAAAAAAAGCTGAAGCCTGCTGACAGCCAGAGAGGGTACTTGTCTGTCAGGGAAAAATTCTACACAGGACAGACTGG
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AGCCCAGACTGGTCTGGGTCAGTGACACACGGCACAGCACACGGTGGGACAACCTGGCTGTGCATCTCTCTCAAACCTCTTGTCACCCTTC
TCACTGTGGCCACAGCGAAGCGAATACATCTCTCTGCTTTTCACTACGTAGCTCCATCATTGCCTTGGGGGGGGGTAGCGAGGAAGGTCAC
TGGGGCCCTGCCTCTGATAAGAAGAACGAGCAATTATGATTTCCAGGAACCGAGGGTGCTCTTGCTGTTCAGTGTCTCCAGCACCCCCGGA
GACCCCAGGGCTGCCGTCAAGGGTGTTCAATAAACACGTATCGATTGAGCCAACAATGCCAGAATTGGACCTGCAGAGGAGAAAATGGACA
AACAAGACAGTGAGCCTGCAGGTGAGACCAGAACTGGAGCCAACAATCTACCTCTCTCTCCCAACCCTAGCAACGCCAGCAGCTCTCTGGG
CGAGGGGCACAGTTGCTTCCAGTTGGCAGAACCAGTCTCCCAGCTTCCCTTCAGAACCCAGCACCTGCTGAGCCACCGACCCACGGACTGT
CTCTCTCTGGAAGGCAGCCACCGACCCACGGACTGTCTCTCTCTGGAAGGCAGTTCACCTCTGGGTTTCAACACTGCCCTTTCCCCTTTCC
TTCTTTAGCCCTTAGGAATCCCTGAAAGCTTCCTGTGCTTGTGGCTTCTGTGACTTCTCAACATCTCTTGTGCACACACACACACACACAC
ACACACACACACCAGCCTGTGTCTAAGCAGTTCATCCTGTACAATGTCTCTCTGATAAAATAACTGATTCCATTTCTGTCACCTGCTGAGG
CTCCAGCAGCTCTGCCCTCAGACCTCTTAAAGCTGAGGCTCAGAAGCACAGGGAGGCACGGGAACCTGGTCCCAGGCCCTGGCTTGCTGGA
GCGAAGGAATCTATTGCTTCGGCCACTCGGTCAGAATCCCTCGGAGATTGATGTGATATGCACAGTGACACCCAATCGGGCTTGGAAAACT
GGGCCAACAGTTAAGCCACACAAAGGAACTAACCACAGCTCCACTGGCAACTGGCTCCTTGGCAAGTGCCAAAACAAACAGCTGTGGTGCA
GGCCTTCCCCGGGCTGCCGGCTTCCTGGACACTGGCAGAGGCCGCTCAAGAAGGGAGTACCTGAGTAGGGTGTTGTTCAGTTGGTAGAACG
TTTGCTTGCCTTCCATGAAGCCCAGGGTTCTGTCTGCACCTCATACCTGTGATCCTAGCAGTTGGGAAAAGACAGCAAGCACCCGGATCAG
AAGTTCAAGACCACCCTCCCCTTTATAAAGGGATCTGAGGCAGCCTGGGACATCTGAATGACAAATGAAAAGAGCCGTGAGCTATCTGGTG
TTTTCTTCATGGAAGTCCAAGTCTCCCCCTCATTCCTCCCAGGATTCTCCGAATCTGGCTGTTGTCTTTTGCGATATTTTAGAATATTCTA
GCCAGAGCGCAGAGTATAAAATACAAGTCAAAGGCAATGAGCATATGTTAGATGGATGGAGGAGGGCCTAAAAATGCTGGTGCTGGGGAGG
AAAAATGGCTCAGCAGTTAAGAGCACCGGCTGCTTTTACAGAGGACCTGCCTTCAGTTCACAGCAACCGCATGACGGCAACTCTGGTTCCA
GGAAATCCAATGCCCTCTTCTGACCTCTATAGGCACCCGGCAAGCACACAGTGCACAGACAATCATACACACGTGT.
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Figure S1. Protein-Coding Genes Induced in the “MEF” and “KRAS” Systems in a p53-Dependent Fashion Are Enriched in p53 Terms,

Related to Figure 1
(A) Top significant biofunctions of protein-coding genes commonly upregulated in the “MEF” and “KRAS” model systems in a p53 dependent manner.

(B) Top significant canonical pathways of the genes commonly upregulated in the “MEF” and “KRAS” model systems in a p53 dependent manner.

(C) Most significant biofunctions of the protein-coding genes specifically regulated by p53 in the “MEF” but not “KRAS” experimental system (left panel) or in the
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“KRAS” but not “MEF” experimental system (right panel).

Analyses were performed with Ingenuity Pathways Knowledge Base. The significance of the enrichment of each biofunction or pathway in each gene set is plotted
as -log(p-value) and red lines indicate p = 0.05. Red squares represent the proportion of genes of a given pathway that are present in the experimental gene set
(ratio).

(D) Relative lincRNA transcript levels in p53*/* (dark gray) or p53~/~ (light gray) KRAS lung tumor cells (lincRNA-Mkin1, incRNA-p21, lincRNA-Adamts16,
lincRNA-Pou3f and lincRNA-Zf281) or MEFs (lincRNA-ActI7b, lincRNA-Mycn and tug1).

(E) WB showing the specific induction of p53 by Dox treatment in p53 wt MEFs but not p53—/— MEFs used for p53 ChIP experiment.
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Figure S2. LincRNA-p21 and Cdkn1a Are Two Independent p53 Target Genes, Related to Figure 2

(A) Chromatin structure of incRNA-p21 and Cdkn1a loci. The chromatin structure at the lincRNA-p21 and Cdkn1a loci is shown as mESC ChIP-Seq data; for each
histone modification (H3K4me3, green; H3K36me3, blue), the results of ChlP-sequence experiments are plotted as the number of DNA fragments obtained by
ChIP-sequence at each position divided by the average number across the genome. Red stars indicate the position of the p53 binding motifs in lincRNA-p21 and
Cdkn1a promoters. The structures of lincRNA-p21 and Cdkn1a genes are represented with red boxes as exons and arrowed lines as intronic sequences. Grey
arrows indicate the direction of transcription.

(B) Temporal induction of lincRNA-p21 and Cdkn1a in wt MEFs treated with DNA damage. MEFs were treated with 500nM doxorubicin and RNA was harvested at
0, 3, 6 and 9 hr after treatment. RNA was extracted and lincRNA-p21 (light gray), p53 (medium gray) and Cdkn1a (black) RNA levels were determined by gRT-PCR.
RNA levels are the median of 4 technical replicates normalized to 9 hr +/—STD.
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Figure S3. LincRNA-p21 Mediates Gene Repression in the p53 Pathway, Related to Figure 3

(A) Protein-coding genes affected by p53 but not lincRNA-p21 siRNA treatments (left panel) or commonly affected by lincRNA-p21 and p53 siRNA treatments
(right panel) relative to siRNA control. Shades of red and blue are scaled to 8-fold activation and repression respectively.

(B) Protein-coding genes affected by lincRNA-p21 but not p53 siRNA treatments relative to siRNA control.

(C) and (D). Most significant biofunctions of genes affected by p53 but not lincRNA-p21 depletion (C) or by lincRNA-p21 depletion but not p53 depletion (D). Anal-
yses were performed with Ingenuity Pathways Knowledge Base and the significance of the enrichment of each biofunction in each the gene set is plotted as -log
(p-value) and red lines indicate p = 0.05.

(E) p21 protein levels in p53-reconstituted p53-S-S- MEFs treated with the indicated siRNAs followed by 14 hr of 100nM dox treatment. bActin levels are shown
as control.

(F) gRT-PCR validation of lincRNA-p21 microarray data by lincRNA-p21 depletion with independent siRNA oligos. p53-reconstituted p53-SY-S- MEFs were trans-
fected separately with 4 different siRNAs targeting lincRNA-p21 or a siRNA control pool and treated with 100nM doxorubicin for 14 hr. The RNA was extracted and
tested by qRT-PCR for lincRNA-p21 (top left), Col1A1 (top middle), Phex (top right), Reck (bottom left) and Penk1 (bottom middle) RNA levels. Each experiment
was done in two biological replicates and each bar represents one biological replicate and the median of 4 technical replicates +/—STD.

(G) Genes regulated by lincRNA-p21 and p53 are enriched in terms of the p53 biological response. Plot of the gene ontology (GO) enrichment analysis (Supple-
mental Experimental Procedures) of the genes affected by p53 knock down (dark gray) or lincRNA-p21 knock down (light gray). The enrichment P value is plotted
as -log(P value) on the x axis. Red line denotes p = 0.05.

(H) Genes regulated by lincRNA-p21 enforced expression significantly overlap with genes specifically regulated by p53 restoration in the MEF (upper panel) and
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KRAS (lower panel) systems (FDR < .001). The green line represents the observed enrichment score profile of protein coding genes induced by lincRNA-p21
overexpression in DNA damaged-p53 reconstituted-p53-SYS- MEFs with genes regulated in a p53-dependent manner in the MEF and KRAS systems (left
and right panels respectively). Enrichment was determined by Gene Set Enrichment Analysis (GSEA).

() Genes induced by lincRNA-p21 and p53 depletion are specifically repressed by p53. Relative RNA levels of Atf2, Wee1, Cdk4 and Stat3 genes determined by

qRT-PCRin p53LSL/LSL MEFs where p53 allele has been reconstituted (p53 on) or not (p53 off) and treated with p53 siRNA or control siRNA. Values represent the
median of 4 technical replicates +/—STD.
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Figure S4. LincRNA-p21 Regulates Cellular Apoptosis, Related to Figure 4

(A) LincRNA-p21 depletion increases cell viability. Relative number determined by MTT assay of wild-type MEFs 96 hr after siRNA transfection with three inde-
pendent lincRNA-p21 siRNAs (light blue, red and yellow), a p53 siRNA pool (green) or two independent non-targeting siRNA pools (dark blue and orange). Cells
were treated with 400nM doxorubicin (DOX) from 24h after transfection. Values represent the average of three biological replicates +/—STD, and stars represent
significant difference (P<0.01) to control siRNAs.

(B) LincRNA-p21 depletion by independent siRNA oligos. MEFs were transfected with three independent siRNAs targeting lincRNA-p21 or two independent non-
targeting siRNA pools as control. 24 hr after transfection cells were treated with 100nM doxorubicin and 24 hr later RNA was extracted and lincRNA-p21 levels
were quantified by gRT-PCR. Values represent the median of 4 technical replicates +/—STD, and stars represent significant difference (P<0.01) to control siRNAs.
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(C) LincRNA-p21 depletion with independent siRNAs induces increased cell viability. MEFs were treated as in (B) and 72 hr after transfection the number of cells
was determined by counting cells in 16 random live microscopy fields per condition. Values represent the average of 3 biological replicates +/—STD, and stars
represent significant difference to control siRNAs.

(D) Apoptosis induction in p53-reconstituted p53-S--St is dependent on the Dox dosage. Percentage of apoptotic cells determined by FACS analysis of Annexin-
V positive cells after treatment with the indicated dosages of Dox for 14 hr. Values are average of 3 biological replicates +/—STD.

(E) Overexpression of lincRNA-p21 in 3T3 MEFs affects cell viability. 3T3 MEFs were transfected with a puromycin resistance vector expressing lincRNA-p21
(light lines) or the empty vector as control (dark lines) and after puromycin selection cells were grown in the presence (right panel) or absence (left panel) of
DNA damage. At different times after platting the number of viable cells was determined by MTT assay. Each value represents the average of 3 biological repli-
cates +/— STD.

(F) LincRNA-p21 overexpression in untreated LKR cells. Relative RNA levels of lincRNA-p21 in LKR cells transfected and selected with a plasmid overexpressing
lincRNA-p21 (light bars) or a control plasmid (dark bars). Values are the median of 4 technical replicates +/—STD.

(G) LincRNA-p21 overexpression in LKR cells. Proportion of cells in the G1, G2 and S phases of cell cycle determined by BrdU and Pl staining followed by FACS
analysis of LKR cells overexpressing lincRNA-p21 (light bars) or a control plasmid (dark bars). Values represent the median of 3 biological replicates +/—STD.
(H) LincRNA-p21 overexpression in untreated LKR cells. Proportion of apoptotic cells determined by Annexin-V staining and FACS analysis of LKR cells over-
expressing lincRNA-p21 (light bar) or control plasmid (dark bar). Values represent the median of 3 biological replicates +/—STD.
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Figure S5. LincRNA-p21 Is Enriched in the Nuclear Compartment of the Cell, Related to Figure 5

(A) RNA was extracted from nuclei and cytoplasm (total) or only nuclei (nuclear) of p53-reconstituted p53-SYLSLpNA damaged-MEFs. 1 ng of RNA was used for
qRT-PCR analysis of lincRNA-p21, U2 RNA (nuclear retained) and p21, p53 and BActin mMRNAs (exported to cytoplasm). Values represent the median of 4 tech-
nical replicates +/—STD.

(B) Prediction of lincRNA-p21 structure of a130-280nt region based on sequence conservation and compensatory mutations (Hofacker, 2003). Color scale indi-
cates the confidence for the prediction for each base with shades of red indicating strong confidence.

(C) Negative representation of the Minimal Free Energy (MFE) (kcal/mol) associated to structures in 200nt increments of lincRNA-p21 RNA sequence determined
by Vienna RNA package (Hofacker, 2003).
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Figure S6. LincRNA-p21, p53 and hnRNP-K Depletion Results on Derepression of Coregulated Genes, Related to Figure 6

(A) siRNA depletion of hnRNP-K, lincRNA-p21 and p53 in one set of replicates of the samples subjected to microarray analysis. p53-restored p53-S“S- MEFs
were transfected with siRNA pools targeting hnRNP-K, lincRNA-p21, p53 or a non-targeting siRNA pool. 24 hr after transfection cells were treated with 100nM
doxorubicin for 14 hr and then RNA was extracted and analyzed by gRT-PCR for quantification of hnRNP-K (left panel), lincRNA-p21 (middle panel) and p53 (right
panel) RNA levels. Values are the median of 4 technical replicates +/—STD.

(B) hnRNP-K and p53 protein levels in lincRNA-p21, hnRNP-K, p53 and control siRNA treated cells. p53-restored p53-S“-S- MEFs were treated as in (A), protein
was extracted and levels of hnRNP-K (top panel) and p53 proteins (middle panel) were determined by Western blot analysis. The bottom panel shows beta-actin
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levels as loading control.

(C) Hierarchical clustering of the genes differentially expressed (FDR < .05) in either one of the three siRNA treatments (lincRNA-p21, p53 or hnRNP-K). Cells were
treated like in (A). Three biological replicates (R1, R2 and R3) were included for each siRNA treatment and differentially expressed genes were determined by
microarray analysis (FDR < 0.05) (Supplemental Experimental Procedures).

(D) LincRNA-p21, p53 and hnRNP-K depletion result on derepression of many coregulated genes. Top: Venn diagram representing the number of genes affected by.
lincRNA-p21 (top left), hnRNP-K (top right) or p53 (bottom) siRNA-depletion. The central intersection represents the genes commonly regulated by lincRNA-p21,
hnRNP-K and p53 relative to the control siRNA (FDR < 0.05). Bottom: Relative expression values of the set of genes coregulated by lincRNA-p21, p53 and hnRNP-K
in each experimental condition. Data from two independent experiments with 3 and 2 biological replicates per experiment respectively are included for lincRNA-
p21, p53 and control siRNAs. Data from one experiment and 3 biological replicates are included for hnRNP-K siRNA. Transcripts above or below the global median
are represented in shades of red and blue respectively (shades of red and blue are scaled to 8 fold activation and repression respectively).

(E) hnRNP-K binds to the genes affected by hnRNP-K siRNA-depletion. GSEA analysis comparing the genes missregulated upon hnRNP-K knockdown (FDR < .05)
with the genes whose promoters are bound by hnRNP-K protein in two independent ChIP-chip experiments. ChIP-chip with hnRNP-K monoclonal antibody (left) or
hnRNP-K polycolonal antibody (right panel).

Cell 142, 409-419, August 6, 2010 ©2010 Elsevier Inc. S13



	A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response
	Introduction
	Results
	Numerous LincRNAs Are Activated in a p53-Dependent Manner
	LincRNAs Are Direct Transcriptional Targets of p53
	LincRNA-p21 Is Induced by p53 in Different Cell Systems
	LincRNA-p21 as a Repressor in the p53 Pathway
	lincRNA-p21 Regulates Apoptosis
	LincRNA-p21 Functions through Interaction with hnRNP-K

	Discussion
	Experimental Procedures
	Cell Lines and In Vivo Models
	Promoter Reporter Assays
	LincRNA and Gene-Expression Profiling and Informatic Analyses
	Antibodies
	Viability and Apoptosis Assays and Cell-Cycle Analysis
	Cloning, RNA Pulldown, Deletion Mapping, RIP, and ChIP
	RNA Interference and LincRNA-p21 Overexpression

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References

	Supplemental Information
	Extended Experimental Procedures
	Cell Lines, p53 Restoration and DNA Damage Induction
	RNA Purification and qRT-PCR Analysis
	qPCR Primers
	LincRNA and Protein Coding Gene Expression Profiling
	Identifying Differentially Expressed lincRNAs
	p53 Chromatin Immunoprecipitation
	Protein Coding Gene Expression Profiles
	Gene Set Enrichment Analysis and Functional Term Clustering
	Chromatin Map Data
	p53 Motif Analysis
	RNA Interference and LincRNA-p21 Overexpression
	Nuclear Fractionation
	LincRNA-p21 Sequence

	Supplemental References




