
Nature Genetics | Volume 56 | December 2024 | 2827–2841 2827

nature genetics

https://doi.org/10.1038/s41588-024-02000-5Technical Report

ChIP-DIP maps binding of hundreds of 
proteins to DNA simultaneously and 
identifies diverse gene regulatory elements

Andrew A. Perez1,6, Isabel N. Goronzy1,2,3,6, Mario R. Blanco1, Benjamin T. Yeh    1,2, 
Jimmy K. Guo1,4, Carolina S. Lopes5, Olivia Ettlin    1, Alex Burr    1 & 
Mitchell Guttman    1 

Gene expression is controlled by dynamic localization of thousands of 
regulatory proteins to precise genomic regions. Understanding this cell 
type-specific process has been a longstanding goal yet remains challenging 
because DNA–protein mapping methods generally study one protein at a 
time. Here, to address this, we developed chromatin immunoprecipitation 
done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds 
of diverse regulatory proteins in a single experiment. ChIP-DIP produces 
highly accurate maps within large pools (>160 proteins) for all classes 
of DNA-associated proteins, including modified histones, chromatin 
regulators and transcription factors and across multiple conditions 
simultaneously. First, we used ChIP-DIP to measure temporal chromatin 
dynamics in primary dendritic cells following LPS stimulation. Next, we 
explored quantitative combinations of histone modifications that define 
distinct classes of regulatory elements and characterized their functional 
activity in human and mouse cell lines. Overall, ChIP-DIP generates 
context-specific protein localization maps at consortium scale within any 
molecular biology laboratory and experimental system.

Although every cell in the body inherits the same genomic DNA 
sequence, distinct cell types express different genes to enable specific 
functions. Cell type-specific gene regulation involves the coordinated 
activity of thousands of regulatory proteins that localize at precise 
DNA regions to activate, repress and quantitatively control transcrip-
tion levels. Genomic DNA is organized around nucleosomes1, which 
contain histone proteins that undergo extensive post-translational 
modifications2,3 and together define cell type-specific chromatin states. 
Chromatin state is controlled by regulators that directly read, write and 
erase specific histone modifications2,4 as well as control nucleosome 
positioning and DNA accessibility5,6. This determines which genomic 

regions are accessible for binding by sequence-specific transcription 
factors (TFs)7, enzymes that transcribe DNA into RNA (RNA polymer-
ases)8 and other general and specific regulatory proteins that promote 
or suppress transcriptional initiation9,10. Conversely, recruitment of 
these regulatory proteins to specific DNA regions, along with tran-
scriptional changes, can facilitate changes in chromatin state and DNA 
accessibility5,11.

Understanding how regulatory protein binding leads to cell 
type-specific gene expression has been a central goal of molecular 
biology for decades2. Over the past 20 years, important technical 
advances have enabled genome-wide mapping of regulatory proteins 
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sets of different antibody–bead–oligonucleotide conjugates to create 
an antibody–bead pool, (3) performing ChIP, (4) barcoding chroma-
tin–antibody–bead–oligonucleotide conjugates via split-and-pool 
ligation38–40 and (5) sequencing DNA and computationally matching 
split-and-pool barcodes that are shared between genomic DNA and 
the antibody–oligonucleotide. We define all unique reads containing 
the same split-pool barcode as a cluster and combine reads from all 
clusters corresponding to the same antibody to generate a localization 
map for each protein. The output of ChIP-DIP is analogous to the data 
generated by ChIP–seq; however, instead of a single map, ChIP-DIP 
generates a map for each antibody used (Fig. 1b).

To ensure that chromatin–antibody–bead–oligonucleotide conju-
gates remain intact throughout the ChIP-DIP procedure, we designed a 
series of experiments to measure dissociation between oligonucleotide 
and bead, antibody and bead, or antibody and chromatin (Extended 
Data Fig. 1b and Supplementary Note 1).

(1)	 Oligonucleotide–bead dissociation. We found that most clus-
ters (>95%) contained only a single oligonucleotide type (Ex-
tended Data Fig. 1c), indicating that oligonucleotide move-
ment between beads is rare.

(2)	 Antibody–bead dissociation. We found that beads that were 
not coupled to any antibodies were associated with little chro-
matin (<0.5%; Extended Data Fig. 1d), indicating that antibody 
movement between beads is rare.

(3)	 Antibody–chromatin dissociation. We purified human and 
mouse chromatin using differentially labeled beads, mixed 
them together and observed minimal levels of chromatin as-
signed to the bead type of the incorrect species (4–6%; Extend-
ed Data Fig. 1e), indicating that the vast majority of antibody–
chromatin interactions (>88–92%) remain intact throughout 
the ChIP-DIP procedure.

Together, these results demonstrate that chromatin–antibody–
bead–oligonucleotide conjugates remain intact throughout the 
ChIP-DIP procedure, enabling accurate multiplexed protein–DNA 
assignment (we discuss additional technical validations of ChIP-DIP 
in Supplementary Note 2 and the related Supplementary Figs. 1–3).

ChIP-DIP maps protein–DNA interactions in diverse pools
To test whether ChIP-DIP can accurately map genome-wide protein 
localization, we performed ChIP-DIP in human K562 cells using four 
well-studied proteins: (1) the CTCF sequence-specific DNA binding 
protein that binds to insulator sequences41, (2) the histone H3 lysine 
4 (H3K4) trimethylation (H3K4me3) modification that localizes at 
the promoters of active genes14,42, (3) the RNA polymerase (RNAP) II 
enzyme that transcribes RNA43 and (4) the histone H3 lysine 27 (H3K27) 
trimethylation (H3K27me3) modification that accumulates over 
broad genomic regions that are associated with Polycomb-mediated 
transcriptional repression14,42 (Supplementary Table 1). We observed 

and histone modifications (for example, ChIP followed by sequenc-
ing (ChIP–seq))12–15, improved binding site resolution (ChIP-exo)16,17, 
increased sample throughput (for example, through automation 
and/or sample pooling)18,19 and enabled mapping within limited num-
bers of cells (for example, cleavage under targets and release using 
nuclease (CUT&RUN) and cleavage under targets and tagmentation 
(CUT&Tag))20–22. Yet, while these innovations have uncovered critical 
insights into gene regulation, most work by studying a single protein 
at a time. The few exceptions are multiplexed versions of CUT&Tag, 
which can measure up to three proteins in a single experiment23. How-
ever, these approaches are not readily scalable to larger numbers of 
proteins23–25 and are primarily limited to mapping modified histones 
and other highly abundant proteins but not most TFs and chromatin 
regulators26. In contrast to CUT&Tag methods, CUT&RUN can map 
many TFs and regulatory proteins, but it is not amenable to multiplexed 
mapping of more than one protein at a time27. Due to the large number 
of distinct regulatory proteins involved and the cell type-specific nature 
of their interactions, constructing a comprehensive map of regulatory 
factors to dissect gene regulation remains a challenge using existing 
approaches. Initial attempts to overcome this led to the formation 
of various international consortia that generated reference maps of 
hundreds of proteins within a small number of cell types (ENCODE28, 
PsychENCODE29, ImmGen30, etc.). Although these efforts have provided 
many critical insights31–33, it is not possible to study cell type-specific 
regulation using maps generated from reference cell lines because 
protein binding maps and gene expression programs are intrinsically 
cell type specific34–36. To date, most mammalian cell types, model 
organisms and experimental models remain uncharacterized because 
generating additional cell type-specific regulatory maps using cur-
rent approaches requires thousands of individual experiments for 
each cell type. Accordingly, there is a clear need for a highly scalable, 
multiplexed protein profiling method that can increase throughput 
of protein mapping by orders of magnitude and profile the diverse 
categories of DNA-associated proteins, including classes that have been 
traditionally easier to map (for example, modified histones) and those 
that have been more challenging (for example, TFs)37. Such a method 
would allow any laboratory to generate comprehensive maps for any 
cell type of interest in a rapid and cost-effective manner and would 
enable exploration of key questions that is not currently possible.

Results
Chromatin immunoprecipitation done in parallel enables 
multiplexed mapping of DNA-associated proteins
To enable highly multiplexed, genome-wide mapping of hundreds 
of DNA-associated proteins in a single experiment, we developed 
chromatin immunoprecipitation done in parallel (ChIP-DIP) (Fig. 1a, 
Supplementary Notes 1 and 2 and related Extended Data Fig. 1, and 
Supplementary Figs. 1–3). ChIP-DIP works by (1) using a rapid, modu-
lar approach to couple individual antibodies to beads containing a 
unique oligonucleotide tag (Extended Data Fig. 1a), (2) combining 

Fig. 1 | ChIP-DIP is a highly multiplexed method for mapping proteins to 
genomic DNA. a, Schematic of the ChIP-DIP method. (1) Beads are coupled with 
an antibody and labeled with the associated oligonucleotide (oligo) tag (antibody 
ID). (2) Sets of antibody–bead–oligonucleotide conjugates are then mixed 
(antibody–bead pool) and used to perform ChIP. (3) Multiple rounds of split-
and-pool barcoding are performed to identify molecules associated with each 
chromatin–antibody–bead–oligonucleotide conjugate. (4) DNA is sequenced, 
and genomic DNA and antibody (Ab)–oligonucleotide containing the same split-
and-pool barcode are grouped into a cluster, which are used to assign genomic 
DNA regions to their linked antibodies. (5) All DNA reads from all clusters 
corresponding to the same antibody are used to generate protein localization 
maps. b, Protein localization maps over a specific human genomic region (hg38, 
chromosome (chr)12:53,649,999–54,650,000) for four protein targets: CTCF, 
H3K4me3, RNAP II and H3K27me3. Left, protein localization generated by ChIP-

DIP in K562 cells. Top track shows read coverage before protein assignment, 
and the bottom four tracks correspond to read coverage after assignment to 
individual proteins. Right, ChIP–seq data generated by ENCODE in K562 cells 
for these same four proteins are shown for the same region. To enable direct 
comparison of scales between datasets, we normalized the scale to coverage per 
million aligned reads. Scale is shown from zero to maximum coverage within 
each region. c, Comparison of ChIP-DIP and ChIP–seq maps over specific regions 
corresponding to magnified views of the larger region shown in b. The locations 
presented are demarcated by colored bars above the gene track in b. Scale shown 
is like that in b. d, Genome-wide comparison (density plots of signal correlation) 
between the localization of each individual protein measured by ChIP-DIP (x axis) 
or ChIP–seq (y axis). Points are measured genome wide across 10-kb windows 
(CTCF, H3K27me3) or all promoter intervals (H3K4me3, RNAP II).
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localization patterns that are highly comparable at specific genomic 
sites (Fig. 1b,c) and strongly correlated genome wide (r = 0.837–0.956; 
Fig. 1d) to ChIP–seq profiles generated by the ENCODE consortium28,31,44 
(Supplementary Table 2).

Because there are many hundreds of regulatory proteins, we 
explored whether ChIP-DIP could generate maps for large pools of 
distinct proteins. We considered two possibilities that might limit the 
scale of ChIP-DIP. (1) As the size of each pool increases, the background 

levels of immunoprecipitated chromatin might increase and obscure 
our ability to generate high-quality binding maps for individual pro-
teins (‘pool size’). (2) If multiple proteins bind to similar DNA regions, 
this might deplete the associated chromatin and preclude our ability 
to accurately map each protein. In this way, the exact composition of 
the antibody pool used might impact the maps obtained for an indi-
vidual protein (‘pool composition’). To explore these possibilities, we 
analyzed the genome-wide profiles of the same four proteins (CTCF, 
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Fig. 2 | ChIP-DIP accurately maps known protein–DNA interactions across 
a range of multiplexed protein numbers, protein compositions and cell 
numbers. a, Schematic of the experimental design to test the scalability of 
antibody–bead pool size and composition. b, Correlation heatmap for protein 
localization maps of 4 proteins (CTCF, H3K4me3, RNAP II and H3K27me3) 
generated using antibody pools of 5 different sizes (1, 10, 35, 50 and 52 antibodies 
per pool) and compositions. Correlations were calculated over the set of regions 
corresponding to the union of all peaks called for any of the four targets in the 
K562 ten-antibody experiment and were calculated using the background-
corrected ChIP-DIP signal for each sample (Methods). Pool sizes are listed along 
the top and left axes. Replicate proteins in the same pool indicate that a different 
antibody was used for that protein. Some proteins were not included in every 
pool. c, Comparison of H3K4me3 localization over a specific genomic region 
(hg38, chr19:45,345,500–46,045,500) when measured within various antibody 
pool sizes and compositions. Scale is normalized to coverage per million aligned 
reads. d, Comparison of CTCF localization over a specific genomic region 

(hg38, chr19:40,349,999–41,050,000) when measured within a pool of 10 
antibodies containing a single CTCF-targeting antibody (top) or within a pool 
of 52 antibodies containing 2 different CTCF-targeting antibodies (bottom). 
Scale is normalized to coverage per million aligned reads. e, Schematic of the 
experimental design to test the amount of cell input required for ChIP-DIP. k, 
thousand; M, million. f, Correlation heatmap for protein localization maps of 
four targets (CTCF, H3K4me3, RNAP II and H3K27me3) generated using various 
amounts of input cell lysate. Correlations were calculated over the same set 
of regions as b and using the background-corrected ChIP-DIP signal for each 
sample (Methods). Amounts of input cell lysate are listed along the top and left 
axes. g, Comparison of H3K4me3 localization over a specific genomic region 
(hg38, chr13:40,600,000–42,300,000) when measured using various amounts 
of input cell lysate. Scale is normalized to coverage per million aligned reads. 
h, Comparison of CTCF localization over a specific genomic region (hg38, 
chr12:53,664,000–53,764,000) when measured using various amounts of input 
cell lysate. Scale is normalized to coverage per million aligned reads.
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H3K4me3, RNAP II, H3K27me3) measured across six distinct experi-
ments containing increasing pool sizes (1, 10, 35, 50 and 52 antibod-
ies per pool) and containing distinct pool compositions, including 
pools containing independent antibodies targeting the same protein 
(CTCF) or multiple proteins within the same complex (for example, 
multiple members of the Polycomb repressive complexes (PRC) 1 and 
2; Extended Data Fig. 2). In all cases, we observed highly consistent 
genome-wide profiles generated from these distinct pools, regardless 
of pool size or protein composition (Fig. 2a–d, Supplementary Fig. 4 
and Supplementary Table 3).

One of the major challenges with mapping DNA binding proteins 
in primary cell types, disease models and rare cell populations is the 
large numbers of cells required to map each protein target. To explore 
the number of cells required to generate reliable genome-wide maps 
with ChIP-DIP, we used the same pool of 35 different antibodies across 
an ~1,000-fold range of input cell numbers (4.5 × 107, 5 × 106, 5 × 105 and 
5 × 104 total cell equivalents). We observed strong genome-wide cor-
relations and peak overlap across the range of cell numbers (Fig. 2e–h 
and Supplementary Figs. 5 and 6) and enrichment profiles similar to 
data generated by low-cell number CUT&Tag (Supplementary Figs. 7 
and 8). Because ChIP-DIP generates many individual maps from the 
same lysate, this further reduces the effective number of cells required 
to map each protein. In this example, we mapped 35 different proteins 
using 5 × 104 total cell equivalents, which corresponds to using the 
chromatin yield from ~1 × 103 cells to map each individual protein with 
a traditional individual assay.

Together, these results demonstrate that ChIP-DIP generates data 
that are highly comparable to those generated by standard methods 
and is robust across different antibody pools and input cell numbers.

ChIP-DIP maps hundreds of diverse DNA-associated proteins
We next explored whether ChIP-DIP can simultaneously map proteins 
from distinct functional categories, some of which have been tradition-
ally easier to map than others45,46. To do this, we performed ChIP-DIP on 
>60 distinct proteins in human K562 cells and >160 distinct proteins in 
mouse embryonic stem cells (mESCs) across six experiments (Supple-
mentary Table 1 and Supplementary Note 2). These included 39 histone 
modifications, 67 chromatin regulators, 51 TFs and all three RNAPs and 
four of their post-translationally modified isoforms.

Histone modifications. Histone modifications define cell type-specific 
chromatin states and have proven incredibly useful for annotating cell 
type-specific regulatory elements47. We mapped 39 histone modifi-
cations, including 18 acetylation, 17 methylation, three ubiquitina-
tion and one phosphorylation marks, in either mESCs or K562 cells 
(Fig. 3a). We confirmed the specific localization of five histone modi-
fications commonly used to demarcate functional states7 as well as 
additional modifications associated with each state (Extended Data 
Fig. 3 and Supplementary Fig. 9): enhancer regions48 (H3K4 mono-
methylation (H3K4me1), H3K4 dimethylation (H3K4me2), H3K27 
acetylation (H3K27ac); Fig. 3b), transcribed regions14,49,50 (H3K36me3, 
H3K79me1, H3K79me2; Fig. 3c), promoter regions14,42,51 (H3K4me3, 
H3K9ac; Fig. 3d), Polycomb-repressed regions52 (H3K27me3, histone 
H2A lysine 119 ubiquitination (H2AK119ub); Fig. 3e) and constitutive 
heterochromatin regions53 (H3K9me3, H4K20me3; Fig. 3f). These 
data indicate that ChIP-DIP accurately maps histone modifications 
with distinct genome-wide patterns (broad and focal localization) 
that represent distinct activity states (active or repressive) and that 
localize at distinct functional elements (promoters, enhancers, gene 
bodies and intergenic regions).

Chromatin regulators. Chromatin regulators are responsible for 
reading, writing and erasing specific histone modifications and are 
critical for the establishment, maintenance and transition between 
chromatin states11,54. We measured 67 chromatin regulators associated 

with various histone methylation, acetylation and ubiquitination 
marks as well as with DNA methylation in either mESCs or human 
K562 cells (Fig. 3a). As expected, we observed that an eraser ( JARID1A)55 
and a writer (RBBP5-containing complex)56 of H3K4me3 localize at 
H3K4me3-modified promoter sites (Fig. 3g and Extended Data Fig. 4a). 
Additionally, we observed that components of the PRC1 (RING1B, 
CBX8)57 and PRC2 complexes (EED, SUZ12, EZH2)58 colocalize and are 
enriched over genomic regions containing their respective histone 
modifications (H2AK119ub and H3K27me3; Fig. 3h and Extended Data 
Figs. 2 and 4b). Similarly, we observed colocalization of heterochroma-
tin protein (HP)1α and HP1β at genomic DNA regions containing their 
associated heterochromatin marks, H3K9me3 and H4K20me3 (ref. 59) 
(Fig. 3i and Extended Data Fig. 4c). These data indicate that ChIP-DIP 
accurately maps chromatin regulators from diverse complexes and 
with distinct functions.

TFs. TFs bind cis-regulatory elements in combinatorial patterns to 
control gene expression. Generating comprehensive maps of TF 
localization has proven difficult because there are large numbers of 
distinct TFs, most are cell type specific and they are challenging to 
map by ChIP–seq because they tend to be lower in abundance and 
only transiently associated with DNA60,61. To explore whether ChIP-DIP 
can map large sets of TFs, we measured 15 TFs in K562 cells and 43 
TFs in mESCs, including constitutive (for example, SP1 and USF2)62,63, 
stimulus-dependent (for example, p53 and NRF1)64–66 and develop-
mental and/or cell type-specific (for example, NANOG and RFX1)67,68 
DNA binding proteins69 (Fig. 4a). We obtained high-resolution binding 
maps for TFs in both cell types, with previously characterized TFs show-
ing localization at their expected genomic DNA targets62,66,70–73 and a 
median peak concordance of >90% for known binding sites (Fig. 4a,b 
and Supplementary Table 4). Using these genome-wide localization 
data, we accurately identified expected DNA binding motifs (Sup-
plementary Fig. 10 and Supplementary Table 5), including the 20-bp 
dimer motif of p53 (ref. 74) and the 21-bp RE-1 consensus sequence 
of the TF REST75 (Fig. 4c). Together, these data indicate that ChIP-DIP 
generates accurate, high-resolution binding maps of diverse TFs in 
multiple cell types.

RNAPs. Different classes of RNA are transcribed by distinct RNAPs: 
RNAP I transcribes the 45S ribosomal RNA (rRNA) encoding the 18S, 
28S and 5.8S rRNAs; RNAP II transcribes messenger RNA and various 
noncoding RNAs, including small nuclear RNA (snRNA), small nucleo-
lar RNA (snoRNA) and long noncoding RNA; and RNAP III transcribes 
diverse small RNAs, including transfer RNA (tRNA), 5S rRNA and 7SL, 
7SK and U6 snRNA8. We leveraged ChIP-DIP to simultaneously map all 
three RNAPs and the post-translationally modified forms of RNAP II. 
We observed that each RNAP localizes with high selectivity to its cor-
responding classes of genes; RNAP I binds at ribosomal DNA (rDNA), 
RNAP II binds at mRNA and snRNA genes, and RNAP III binds at tRNA 
genes (Fig. 4d and Extended Data Fig. 5a). Moreover, we observed dis-
tinct localization patterns of different RNAP II phosphorylation states: 
serine 5-phosphorylated RNAP II localizes at promoters, while serine 
2-phosphorylated RNAP II accumulates over the gene body and past 
the 3′ end of the gene (Extended Data Fig. 5b). These data indicate that 
ChIP-DIP accurately maps the localization of the three RNAPs, including 
multiple functional phosphorylation states of RNAP II, at distinct gene 
classes and gene features.

Together, these results establish ChIP-DIP as a modular, highly 
multiplexed method that generates high-quality maps for a wide range 
of DNA-associated proteins spanning diverse biological functions.

Multisample maps reveal chromatin changes in immune cells
Because gene regulation is highly dynamic in nature, we explored 
whether ChIP-DIP can be used to study changes in protein localization 
across multiple experimental conditions simultaneously. To explore 
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this, we treated primary mouse bone marrow-derived dendritic cells 
(mDCs) with lipopolysaccharide (LPS), which induces an anti-bacterial 
pathogen response that leads to changes in the expression of hundreds 
of genes76, and collected cells at 0, 6 and 24 h after stimulation (Fig. 5a). 
In all, we used a pool of 25 antibodies to map 22 distinct chromatin 
modifications, including all five canonical active and repressed func-
tional states, at all three time points.

We found that multiple chromatin modifications, including modi-
fications demarcating active promoters, gene bodies and enhancers as 
well as insulation domains (CTCF) and repressive domains (H3K27me3), 
change substantially across the time course (Fig. 5b and Extended Data 
Fig. 6a), with the largest number of changes occurring within the first 
6 h. For H3K27ac-enriched regions, these changes follow three tem-
poral patterns: (1) one set stays the same across the entire time course 
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Fig. 3 | ChIP-DIP accurately maps dozens of functionally diverse histone 
modifications and chromatin regulators. a, Illustration of the diverse histone 
modifications and chromatin regulatory proteins mapped in K562 cells or 
mESCs using ChIP-DIP. b,c, Visualization of multiple histone modifications 
across a genomic region (hg38, chr22:23,050,000–23,290,000) in K562 cells 
corresponding to multiple histone modifications associated with enhancers 
(H3K4me1, H3K4me2 and H3K27ac) (b) and active gene bodies (H3K36me3, 
H3K79me1 and H3K79me2) (c). d, Top, schematic of histone modifications and 
chromatin regulators associated with active promoters. Bottom, visualization 
of multiple histone modifications associated with active promoters (H3K4me3 
and H3K9ac) across a genomic region (mm10, chr12:81,590,000–81,636,000) in 
mESCs. Hash marks indicate an intervening 29-kb region that is not shown.  
e, Top, schematic of histone modifications and chromatin regulators associated 

with Polycomb-mediated repression. Bottom, visualization of multiple histone 
modifications associated with Polycomb-mediated repression (H3K27me3 and 
H2A119ub) across a genomic region (hg38, chr2:175,846,000–176,446,000) 
containing the silenced HOXD cluster in K562 cells. f, Top, schematic of 
histone modifications and chromatin regulators associated with constitutive 
heterochromatin. Bottom, visualization of multiple histone modifications 
associated with constitutive heterochromatin (H3K9me3 and H4K20me3) across 
a genomic region (hg38, chr2:46,200,000–55,700,000) in K562 cells.  
g, Visualization of an H3K4me3-associated eraser ( JARID1A) and writer 
component (RBBP5) across the same genomic region as that in d. h, Visualization 
of PRC2 (EED) and PRC1 (RING1B) components across the same genomic region 
as that in e. i, Visualization of HP1β and HP1α across the same genomic region as 
that in f.
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(‘stable’), (2) one set increases upon stimulation (‘activated’) and (3) 
one set decreases upon stimulation (‘repressed’) (Fig. 5c). These three 
sets of regions correspond to genes for which transcription remains 
unchanged, increases and decreases, respectively (Extended Data 

Fig. 6b). As an example, we observed that H3K27ac regions near inflam-
matory cytokine and chemokine genes, which increase in expression 
upon LPS stimulation, show a dramatic increase in acetylation (Fig. 5b 
and Extended Data Fig. 6c). We observed three temporal patterns of 
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Fig. 4 | ChIP-DIP accurately maps dozens of TFs representing diverse 
functional classes and all three RNAPs. a, Top, visualization of six TFs (SP1, 
USF2, p53-pSer15, NRF1, NANOG, RFX1) representing three broad functional 
classes (constitutive, stimulus response, development–cell type specific) across 
a genomic region (mm10, chr11:35,000,000–75,000,000) in mESCs. Bottom, 
higher-resolution magnified views showing individual TF binding patterns at 
selected targets and motif sites. (1) p53 binding the p53 response element on the 
cyclin G1 gene (Ccng1) promoter. (2) NANOG binding a cluster of sites internal to 
the developmental gene Adam19. (3) NRF1 binding multiple copies of its motif 
at the Fxr2 promoter. (4) The constitutively active USF2 binding its triplicate 

E-box motif. b, Visualization of the TF TBP (constitutive) and REST (NRSF; cell 
type specific) across a genomic region (hg38, chr11:1–11,000,000) in K562 cells. 
Bottom, higher-resolution magnified views highlight two individual peaks of 
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acetylation at ‘activated’ regions: (1) H3K27ac regions that initially 
increase but then return to baseline by 24 h (‘pulse’), (2) H3K27ac 
regions that only increase after 6 h of stimulation (‘delayed’) and (3) 
H3K27ac regions that continue to increase throughout the time course 
(‘sustained’) (Fig. 5d). At ‘activated’ regions, we find temporally match-
ing patterns of gene expression, while, at ‘repressed’ regions, gene 
expression can recover without a corresponding return in acetylation. 
Notably, while both promoter and enhancer chromatin modifications 
change upon LPS stimulation, enhancer modifications show a stronger 
concordance with changes in transcriptional activity than changes at 
promoters (Fig. 5e,f and Extended Data Fig. 6d).

In sum, ChIP-DIP enables direct characterization of protein locali-
zation changes across distinct samples, time points or perturbations 
in various biological systems, including primary cells.

Protein localization analysis reveals distinct cis-regulators
Previous large-scale analyses have identified histone modifications that 
demarcate distinct genomic elements (for example, promoters, enhanc-
ers, transcribed regions, etc.)77, their activity state (active, inactive, 
repressed) and regulatory potential (poised or primed for activation)78. 
However, because of the large number of histone modifications and 
regulatory proteins, many efforts have focused on mapping only five his-
tone modifications (that is, H3K4me3, H3K4me1, H3K36me3, H3K9me3 
and H3K27me3)7. Because ChIP-DIP can map large numbers of diverse 
proteins, we asked whether combinations of histone modifications and 
regulatory proteins can provide additional information about activity 
states and regulatory potentials of cis-regulatory elements beyond those 
captured by the five commonly studied histone modifications.

Promoter type and activity state are defined by combinations of 
histone modifications. H3K4me3 is generally thought to mark the pro-
moters of actively transcribed RNAP II transcripts14,42,79. Consistent with 
this, we found H3K4me3 over the promoters of actively transcribed 
RNAP II genes but also near RNAP I promoters (rRNA) and active RNAP 
III genes (tRNA) (Fig. 6a). Similarly, we observed that other histone 
modifications associated with active RNAP II promoters, including 
H3K4me2, H3K9ac, H3K27ac and H3K56ac, were also enriched at RNAP 
I and III genes (Fig. 6a,b and Supplementary Fig. 11). For example, focus-
ing on a genomic region containing neighboring RNAP II and RNAP III 
genes, we observe specific binding of the associated RNAP with shared 
TFs and chromatin modification patterns over these genes (Fig. 6b).

Although the presence of these histone modifications does not 
appear to distinguish between genes transcribed by different polymer-
ases, we observed that their position relative to the transcriptional start 
site (TSS) varies with RNAP gene type: for RNAP I genes, these modi-
fications localize before the TSS; for RNAP II, they flank the promoter 
and are enriched downstream of the TSS, both when considering all 
promoters and when excluding bidirectional promoters (Methods); 
and for RNAP III, they flank the gene body, localizing both upstream of 

the TSS and downstream of the transcriptional termination site (Fig. 6a 
and Supplementary Fig. 11). In addition, the three RNAPs have different 
relative levels of these histone modifications near their respective gene 
promoters. Specifically, we found that RNAP I and II promoters display 
stronger H3K56ac enrichment and RNAP I and III display stronger 
H3K4me2 enrichment relative to H3K4me3 (Fig. 6c). Although different 
antibodies have intrinsically different sensitivities that can confound 
direct comparisons, these distinct patterns correspond to differences 
in the relative signals of the same proteins within the same sample at 
distinct genomic regions (for example, RNAP I, II and III promoters). In 
this way, both quantitative combinations of histone modifications and 
their relative positions define distinct classes of promoters (Fig. 6d).

Next, we considered whether other histone modifications may dis-
tinguish activity states of RNAP II promoters. Previously, co-occurring 
H3K4me3 and H3K27me3 modifications (‘bivalent domains’) have been 
shown to associate with a poised transcriptional state13,78, an effect we 
also observe in our data (Supplementary Fig. 12). To explore the spec-
trum of co-occurring modifications at promoters, we quantified the 
levels of ten histone modifications at H3K4me3-enriched regions and 
identified five clusters; four are enriched with other histone modifica-
tions (clusters 1–4), and one is not (cluster 5). The four co-occurring 
clusters correspond to H3K4me3 along with H3K27me3–H2AK119ub 
(cluster 1), H3K36me3–H3K79me2–H3K79me3 (cluster 2), 
H3K9me3–H4K20me3 (cluster 3) or H3K4me1–H3K27ac (cluster 4) 
(Fig. 7a). These clusters correspond to promoters that exhibit dis-
tinct transcriptional activity (Fig. 7b and Extended Data Fig. 7) and are 
enriched for distinct gene classes, such as ribosomal protein and cell 
cycle genes (cluster 2), zinc finger (ZNF) protein (cluster 3) and long 
intergenic noncoding RNA genes (sets 3 and 4)13,80 (Fig. 7c–g). Consist-
ent with the fact that H3K4me3 localization associates with functionally 
distinct classes of promoters, we observed different combinations of 
H3K4me3-associated readers, writers and erasers at distinct promoters 
(Extended Data Fig. 4a).

In sum, these results demonstrate that combinations of histone 
modifications can distinguish promoter features including polymerase 
(Fig. 6d), gene type and activity level (Fig. 7h).

Enhancer type, activity and potential are defined by combinations 
of histone modifications. There are >40 different histone acetylation 
marks3, many of which have been associated with enhancers and active 
transcription. We mapped 15 acetylation marks on all four histone 
proteins and observed that they colocalize at similar sites genome 
wide (Pearson r = 0.86–0.97)81 (Extended Data Fig. 8). We considered 
whether these strong correlations indicate redundancy or whether 
there is additional regulatory information encoded by the relative levels 
of each acetylation mark at specific genomic sites. To explore this, we 
used a matrix factorization algorithm to define five weighted combina-
tions at highly acetylated regions (Methods, Fig. 8a,b, Supplementary 
Note 3 and Supplementary Fig. 13). These quantitative combinations 

Fig. 5 | ChIP-DIP reveals dynamics changes in the chromatin landscape 
following LPS stimulation of primary mDCs. a, Schematic of the experimental 
design to profile chromatin changes in primary cells following LPS stimulation. 
b, Visualization of H3K27ac, H3K9ac, H3K36ac and transcription levels at 0 h, 
6 h and 24 h across a genomic region (mm10, chr2:129,298,000–129,420,000) 
containing the LPS-stimulated interleukin genes Il1a and Il1b. To enable direct 
comparison of time points, we normalized the scale to coverage per million 
aligned reads, and, for each target, scale is shown from zero to maximum 
coverage for all three time points. c, k-means clustered heatmap of H3K27ac 
coverage at individual enriched genomic regions (y axis) across time points  
(x axis). Three distinct sets of regions showing differential temporal patterns are 
labeled along the left side. Regions associated with example inflammatory genes 
are labeled on the right side. d, Line plots of relative H3K27ac coverage of regions 
from c (left) and expression of associated genes (right) versus time. Subsets of 
enhancer regions that are newly acetylated after stimulus (‘activated’) are shown 

above the dashed line, and subsets of enhancer regions that are deacetylated 
after stimulus (‘repressed’) are shown below the dashed line (Supplementary 
Methods). Mean levels are shown as solid lines with surrounding 95% confidence 
interval bands. e, Visualization of H3K27ac, H3K79me1 and transcription levels at 
0 h, 6 h and 24 h across a genomic region (mm10, chr9:25,440,000–25,640,000) 
containing regions belonging to the ‘repressed’ set from c. A masked region of 
~6 kb within the gene has been removed and is indicated by hash marks.  
f, Visualization of H3K27ac, H3K79me1 and transcription levels at 0 h, 6 h and 
24 h across a genomic region (mm10, chr5:92,320,000–92,380,000) containing 
regions belonging to the ‘activated’ set from c. For e and f, scale per histone 
target is shown from zero to maximum coverage across both regions; scale for 
transcription is shown from zero to maximum coverage across a single region. 
Schematics showing relative quantification of levels across a region are shown on 
the right of each track.
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correspond to genomic regions that contain distinct TF and chromatin 
regulator binding profiles (Fig. 8c–f and Extended Data Fig. 9).

Active promoter-proximal elements. The first group (C1) is defined 
by H3K9ac and several other H3 acetylation marks (H3K14ac, H3K18ac, 
H3K36ac, H3K56ac and H3K79ac) (Fig. 8b). Genomic regions con-
taining this signature tend to be localized near the promoter region 
of transcribed genes and are enriched for RNAP II, TFIIB and CpG 
island-associated factors (for example, E2F1, CXX1) (Fig. 8c,e,f).

Poised promoter-proximal elements. The second group (C2) con-
tains high levels of H3K9ac and H2AZac (Fig. 8b). Genomic regions 

containing this signature tend to have lower levels of RNAP II rela-
tive to C1 and are strongly enriched for Polycomb ( JARID2, SUZ12, 
RING1B) and other repressive chromatin regulators (KDM2B, HDAC2) 
(Fig. 8e,f).

Stress and signaling response elements. The third group (C3) con-
tains high levels of H2AZac and H4ac (Fig. 8b), is enriched for RNAP 
II and bound by p53, and contains other stress response motifs (for 
example, BACH1, NRF2) or signaling response motifs (for example, 
CRE) (Fig. 8c,e,f). Consistent with these observations, H2AZ has been 
proposed as a facilitator of inducible transcription (for example, signal-
ing pathway responses and p53 regulation)82–85.
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Points show ratios when computed using the total sum of histone coverage over all 
respective promoters. Marginal distributions are shown for RNAP II and III along  
x and y axes. Axes are log10 scaled. This plot compares the relative signals of the same 
antibodies within the same sample across distinct genomic regions corresponding 
to known promoters of RNAP I, II and III genes. d, Schematic showing relative levels 
of histone modifications H3K4me2 and H3K56ac at H3K4me3-enriched regions and 
the relative position of the associated RNAP promoter.
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Fig. 7 | Combinations of histone modifications distinguish RNAP II 
promoter type, activity and potential. a, Hierarchically clustered heatmap 
of coverage levels of ten different histone modifications (y axis) at individual 
H3K4me3-enriched genomic regions (x axis). Five distinct clusters of regions 
are indicated by colored bars along the top axis. b, RNAP II coverage at 
H3K4me3-enriched regions, as sorted in a. c, Gene density of ten different  
gene classes at H3K4me3-enriched regions, as sorted in a. eRNA, enhancer  
RNA; lincRNA, long intergenic noncoding RNA. d, Visualization of H3K4me3 
and H3K27me3–H2AK119ub (associated with cluster 1) across the EML5 gene 
in K562 cells. e, Visualization of H3K4me3 and H3K79me2–H3K79me3–
H3K36me3 colocalization (associated with cluster 2) across the ribosomal 

protein gene RPL24 in K562 cells. f, Visualization of H3K4me3 and H4K20me3–
H3K9me3 colocalization (associated with cluster 3) across neighboring ZNF 
genes ZNF69 and ZNF700 in K562 cells. g, Visualization of H3K4me3 and 
H3K4me1–H3K4me2–H3K27ac (associated with cluster 4) across the long 
intergenic noncoding RNA gene LNCRNA0881. For tracks in d–g, the non-
H3K4me3 tracks represent the sum of histone tracks associated with each 
set and are scaled to the maximum value across all panels. H3K4me3 tracks 
are scaled to the maximum for each panel. h, Schematic summarizing the 
co-occurring histone modifications at H3K4me3-enriched regions and their 
associated gene groups.
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Fig. 8 | Distinct combinations of histone acetylation marks define unique 
enhancer types that differ in their activity and developmental potential. 
 a, The relative weights of five different combinations of histone acetylation 
marks (C1–C5, y axis) for each acetylated genomic region (x axis). Regions are 
grouped according to the combination that received the greatest weight, and 
groups are indicated along the top axis. b, The relative weights of each histone 
acetylation mark (y axis) within each combination (x axis). Only weights greater 
than 2.5 are labeled. c, Visualization of H3K9ac and H4ac along with SP1  
and p53 across a genomic region (mm10, chr15:34,065,000–34,086,000) 
containing enhancers assigned to the C1 (yellow) and C3 (red) states.  
d, Visualization of H2BK20ac and H3K27ac along with NANOG, TEAD1 and RNAP II 
across two genomic regions (left, mm10, chr7:3,191,500–3,221,500; right, mm10, 
chr18:5,006,500–5,016,500) containing enhancers assigned to C4 (left) and to 

C5 (right), respectively (the scale of the NANOG track is capped to the maximum 
of the left region; TEAD1 data are from published ChIP–seq data from fetal 
cardiomyocytes86). e, Visualization of H3K9ac, H2AZac and H4ac along with RING1B, 
p53 and RNAP II over a genomic region (mm10, chr8:47,272,800–47,427,000) 
containing multiple isoforms of the gene STOX2 and enhancers assigned to states 
C1–C4. f, DNA-associated proteins (x axis, ordered by function) with significant 
binding at genomic regions defined by each combination (y axis) are indicated 
in color (Methods). g, Bars show the enrichment value of selected transcription-
associated factors or regions with a high density of pluripotency TFs (Supplementary 
Methods) in C4- versus C5-associated regions. Whiskers indicate the 5th and 95th 
percentiles from permutation-based resampling (n = 200 permutations) in which 
each permutation retained three-quarters of the C4 or C5 region. h, Schematic of 
C1–C5-associated regions and their corresponding functions.
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Active pluripotency distal regulatory elements. The fourth group 
(C4) is defined by H2BK20ac and H3K27ac (Fig. 8b). These regions tend 
to be promoter distal (Extended Data Fig. 9b) and are associated with 
actively transcribed embryonic- and stem cell-specific genes (Fig. 8d). 
These regions are enriched for binding of pluripotency TFs, including 
NANOG, OCT4 and SOX2, as well as the p300 acetyltransferase and 
components of mediator (Fig. 8f).

Poised differentiation distal regulatory elements. The fifth group 
(C5) is defined by H2BK20ac and H3K14ac (Fig. 8b). These regions 
displayed TF and chromatin regulator occupancy similar to that of 
C4 regions86 (Fig. 8f,g). However, in contrast to C4 regions, C5 regions 
bound by pluripotency factors correspond to enhancers of genes 
involved in post-embryonic development (Extended Data Fig. 10) and 
are enriched for sequence motifs of TFs involved in lineage specifica-
tion and morphogenesis (for example, TEA domain TF (TEAD) fam-
ily)87 (Extended Data Fig. 9c). This suggests that C5 enhancers might 
be important in establishing the gene expression program needed 
upon differentiation (regulatory potential). Interestingly, we identi-
fied a third set of genomic regions that also contain a high density of 
pluripotency TFs but lack the C4 or C5 acetylation signatures; these 
are associated with genes involved in later stages of organogenesis 
(for example, kidney and sensory systems) (Extended Data Fig. 10).

These analyses indicate that histone acetylation is not a redun-
dant marker of enhancers, but that combinations of acetylation 
modifications can define unique classes of cis-regulatory elements 
(promoter-proximal versus -distal enhancers) that act in distinct ways 
(stimulus responsive versus developmentally regulated) and that 
exhibit different activity (for example, active gene expression versus 
poised for activation upon differentiation) (Fig. 8h).

Discussion
We demonstrated that ChIP-DIP enables highly multiplexed mapping 
of hundreds of regulatory proteins to genomic DNA in a single experi-
ment. Although the largest ChIP-DIP experiment in this study con-
tained >225 distinct antibodies, this number was primarily limited by 
the availability of high-quality antibodies, and we expect that ChIP-DIP 
could profile larger pools of antibodies. Because this approach employs 
standard molecular biology techniques, we expect that it will be readily 
accessible to any laboratory without the need for specialized training 
or equipment. As such, we anticipate that ChIP-DIP will enable a fun-
damental shift from large consortia generating reference maps for a 
limited number of cell types to individual laboratories generating cell 
type-specific maps within any specific experimental system of interest.

In recent years, several methods, including multi-CUT&Tag24, 
MulTI-Tag88, MAbID23, NTT-seq89, Nano-CT90 and uCoTarget91, have 
made it possible to simultaneously profile multiple proteins. Yet, these 
multiplexed methods have two limitations: (1) they are limited in scale 
(two to six proteins simultaneously), and (2) they primarily map histone 
modifications and other abundant proteins but cannot map most chro-
matin regulators and TFs (protein diversity)22,24,26. ChIP-DIP overcomes 
both limitations by (1) generating high-quality datasets within pools 
containing >160 distinct antibodies and (2) mapping distinct protein 
types including histone modifications, chromatin regulators and TFs.

Given the important information encoded within quantitative 
combinations of histone modifications, chromatin regulators and TFs, 
comprehensively mapping these factors across cell types will be criti-
cal for studying gene regulation and for defining the putative effects 
of genetic variants associated with human disease. For instance, while 
specific regulatory states have been shown to be encoded by combina-
tions of histone modifications (for example, bivalent domains), the 
number and diversity of such states have remained largely unexplored. 
The large number of chromatin proteins has necessitated a tradeoff 
between mapping many marks in a few cell types or a few marks in many 
cell types. ChIP-DIP overcomes this by mapping hundreds of proteins in 

a single experiment. Moreover, due to the nature of split-pool barcod-
ing used in ChIP-DIP and because there is negligible antibody–bead–
chromatin dissociation during the procedure, ChIP-DIP can also be 
used to map protein binding within multiple samples simultaneously 
using distinct sets of antibody–oligonucleotide-labeled beads. In 
addition to the increase in scale provided by mapping multiple pro-
teins and samples simultaneously, ChIP-DIP multiplexing also reduces 
many sources of technical and biological variability associated with 
processing individual proteins and samples. This ability will enable 
large-scale mapping of dynamic protein localization across distinct 
cell types and time points.

Beyond the applications highlighted in this work, ChIP-DIP can 
be directly integrated into existing split-pool approaches to create 
additional capabilities. For example, we previously showed that we 
can map the 3D genome structure surrounding individual protein 
binding sites (SIP)92; integrating this with ChIP-DIP will enable mapping 
of 3D structure at hundreds of distinct binding sites simultaneously. 
Moreover, we previously developed a method to map 3D genome 
contacts within thousands of individual single cells using this same 
split-pool approach93. Integrating this approach with ChIP-DIP will 
enable comprehensive mapping of hundreds of regulatory binding 
sites within thousands of individual cells. Finally, we previously used 
split-and-pool barcoding to simultaneously map the spatial proximity 
of DNA and RNA and measure noncoding RNA localization and the lev-
els of nascent RNA transcription at individual DNA sites94. Integrating 
this with ChIP-DIP will enable simultaneous measurement of protein 
binding and transcriptional activity at individual genomic locations, 
providing a direct link between binding events and the associated 
transcription activity. For these reasons, we expect that ChIP-DIP will 
represent a transformative tool for dissecting gene regulation.
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Methods
Cells, cell culture and cross-linking
Cell lines. Two cell lines were used: (1) female mESCs (pSM44 mESC 
line) derived from a 129 × castaneous F1 mouse cross and (2) K562, a 
female human lymphoblastic cell line (ATCC, CCL-243).

Primary cells. mDCs were derived from bone marrow collected from 
6–8-week-old female C57BL6 mice95 (Supplementary Methods). mDCs 
were stimulated with 100 ng ml−1 LPS (rough, ultra-pure Escherichia coli 
K12 strain, Invitrogen) and collected at 0 h, 6 h and 24 h after treatment, 
as previously described95.

Cell cross-linking. Cells were cross-linked in suspension with 1% for-
maldehyde for 10 min at room temperature.

ChIP-DIP: bead preparation
Protein G bead biotinylation. Protein G Dynabeads (Invitrogen, 
10003D) were incubated with EZ-Link Sulfo-NHS-Biotin (Thermo Sci-
entific, 21217), and the NHS reaction was quenched with 1 M Tris, pH 7.4.

Preparation of streptavidin-coupled oligonucleotides. Biotinylated 
antibody ID oligonucleotides were coupled to streptavidin (BioLegend, 
280302) in a 96-well PCR plate.

Preparation of oligonucleotide-labeled protein G beads. Ten 
microliters of biotinylated beads were aliquoted into individual 
wells of a deep-well 96-well plate (Nunc 96-Well DeepWell Plates with 
Shared-Wall Technology, Thermo Scientific, 260251), and 14 μl of 
5.675 nM streptavidin-coupled oligonucleotide was added.

Antibody coupling. Antibody (2.5 μg) was added to each well of the 
96-well plate.

Preparation of the bead pool. Beads were pooled using equal amounts 
of prepared beads for each antibody (10 μl beads per antibody) or 
titrated based on the determined chromatin pulldown efficiency meas-
ured in QC experiments (Supplementary Methods).

ChIP-DIP: immunoprecipitation, split-and-pool and library 
preparation
The pool of labeled beads was added to lysate, incubated for 1 h at 
room temperature and then washed. To blunt end and phosphorylate 
double-stranded DNA, the NEBNext End Repair Module (NEB, E6050L; 
containing T4 DNA polymerase and T4 PNK) was used. Split-and-pool 
barcoding was performed as previously described40, with modifi-
cations described in Supplementary Methods. After split-and-pool 
barcoding was complete, beads were resuspended in 1 ml proteinase 
K buffer, digested with proteinase K (NEB) and reverse cross-linked at 
65 °C overnight. DNA from each reverse cross-linked aliquot was iso-
lated and amplified for 9–12 cycles using the Q5 Hot-Start High-Fidelity 
2× Mastermix (NEB, M0294L) and primers that added the full Illu-
mina adaptor sequences. Sequencing was performed on the Illumina 
NovaSeq S4, NextSeq or AVITI (Element Biosciences).

Data-processing pipeline
Reads were split into two files, one for antibody ID reads and one for 
DNA reads, based on the presence of ‘BPM’ (bead tag) or ‘DPM’ (DNA 
tag), respectively, in read 1. For DNA reads, the DPM sequence was 
trimmed and aligned to mm10 or hg38 using Bowtie 2 (version 2.3.5)96 
with default parameters. For antibody ID reads, the BPM sequence was 
trimmed, and the UMI was extracted from the remaining sequence.  
A ‘cluster file’ was generated by aggregating all reads that share the 
same split-and-pool barcode sequence. Individual clusters in the ‘clus-
ter file’ were assigned to a specific antibody based on antibody ID reads 
within the cluster (see Supplementary Methods for assignment details). 

Genomic DNA alignments were split into separate BAM files, one per 
antibody, based on cluster assignment.

Visualization and peak calling
BigWig files were generated from each antibody-specific BAM file using 
the ‘bamCoverage’ function from deepTools version 3.1.3 (ref. 97) and 
were visualized with IGV98. For normalization, a background model was 
generated for each individual antibody using the total pool of assigned 
sequencing reads (Supplementary Methods). Background-normalized 
tracks were generated using the scaled background distribution. Track 
visualizations are scaled to the maximum over the region, and scales 
indicate reads per bin, unless indicated otherwise. Peaks were called 
using the HOMER version 4.11 (ref. 99) program ‘findPeaks’ on tag direc-
tories generated for target datasets. Background-normalized peaks 
were generated using the scaled background distribution as input. 
TF motifs were predicted using the HOMER program ‘findMotifsGe-
nome’ with the parameters ‘-s 200 –mask –len 10’ on peaks generated 
as described above.

Heatmaps, summary plots and other graphical visualizations
Genome-wide metaplots, pairwise scatterplots and correlation heat-
maps were generated and visualized using deepTools version 3.1.3, a 
suite of Python tools designed for efficient analysis of high-throughput 
sequencing data. We used the following functions: ‘multiBamSum-
mary’, ‘multiBigWigSummary’, ‘plotCorrelation’, ‘plotCoverage’, ‘multi-
BamCoverage’ and ‘computeMatrix’. All other graphical visualizations 
(for example, line plots, violin plots, etc.) were generated using seaborn 
version 0.13.2, a Python data visualization library.

ChIP-DIP experiments
We performed 11 ChIP-DIP experiments in this paper, each of which, 
along with the associated antibodies, proteins and statistics, is 
described in Supplementary Table 1. All ChIP-DIP experiments were per-
formed using the same general protocol with a few experiment-specific 
modifications described in detail in Supplementary Methods.

Comparison with ENCODE data
ChIP-DIP comparisons with ENCODE-generated ChIP–seq data 
in Fig. 1 were made using the K562 ten-antibody pool experiment. 
Genome-wide coverage comparisons were calculated across all Ref-
Seq TSSs for H3K4me3 and POLR2A or across 10-kb bins for CTCF and 
H3K27me3. Calculations were performed using ‘multiBamSummary’ 
and plotted as 2D kernel density plots.

For all  ChIP-DIP K562 datasets,  comparisons with 
ENCODE-generated ChIP–seq were made for all targets for which 
ENCODE datasets were available. ENCODE accession numbers are 
listed in Supplementary Methods. The Pearson correlation coefficients 
of genome-wide coverage comparisons were calculated at 1,000 bp 
using ‘multiBigwigSummary’, and the fraction of overlapping peaks 
is reported in Supplementary Table 2.

Comparison with CUT&Tag data
ChIP-DIP data from the K562 35-antibody experiment were compared 
with data from ChIPmentation100 and high-throughput CUT&Tag per-
formed using various starting cell numbers (10,000, 100,000, 500,000 
or 10 million)21. SRA accession numbers are listed in Supplementary 
Methods. The estimated library complexity was calculated using the 
‘lc_extrap’ function from preseq version 3.2.0 (ref. 101). Fraction of 
reads in peaks (FRIP) scores were calculated for all samples with at least 
100 called peaks using the intersect function from BEDTools version 
2.29.2 (ref. 102).

Transcription factor peak comparison
Peak sites from ChIP-DIP TF data were compared to reference bind-
ing sites retrieved from ReMap2022, a database of transcriptional 
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regulator peaks derived from curated ChIP–seq, ChIP-exo and DAP-seq 
experiments103. To ensure that only high-quality datasets are included, 
ReMap2022 implements four different ENCODE-defined quality 
metrics. Only TFs with a minimum FRIP score of 0.5% and for which 
reference data were available were analyzed. Results are reported in 
Supplementary Table 4.

Pool size comparison analysis
To measure the influence of the number of antibodies contained within 
an individual pool, read coverage profiles of four targets (H3K4me3, 
H3K27me3, CTCF and RNAP II) generated in four different ChIP-DIP 
experiments in K562 cells (ten-, 35-, 50- and 52-antibody pools) or 
generated by ENCODE (one-antibody pool) were compared. For both 
RNAP II and CTCF, two different antibodies were included. Coverage 
of normalized BigWig files across the set of all peak regions from the 
ten-antibody pool experiment was calculated using ‘multiBigwigSum-
mary’. Pearson correlation coefficients for all pairs were calculated and 
plotted as a heatmap using ‘plotCorrelation’, manually ordering the 
rows and columns from smallest to largest pool size for each target.

Peak overlaps were calculated for each target between experi-
ments of different pool sizes as the (number of peaks in experiment 1 
intersecting peaks in experiment 2)/(total number of peaks in experi-
ment 1). The numbers of intersecting peaks were calculated using 
BEDTools version 2.29.2 (ref. 102) and are reported in Supplementary 
Table 3.

To ensure that the results were robust to read coverage, the analy-
sis was repeated after downsampling. Specifically, the target-separated 
BAM files from each pool size were downsampled to an equal number of 
reads for each target: H3K4me3, 9 million reads; CTCF, 2 million reads; 
H3K27me3, 15 million reads; RNAP II, 1 million reads. Genome-wide cor-
relation of BigWig profiles was calculated as described above.

Cell lysate amount comparison analysis
To measure the amount of cell input material required for ChIP-DIP, we 
performed a series of ChIP-DIP experiments using the same antibody 
pool and differing amounts of cell lysate (50,000, 500,000, 5,000,000 
or 45,000,000 cells) (Supplementary Methods). Read coverage profiles 
of four targets (H3K4me3, H3K27me3, CTCF and RNAP II) were com-
pared across different levels of input cell lysate. For both RNAP II and 
CTCF, two different antibodies were included, coverage comparison 
was performed identical to that described for ‘Pool size comparison 
analysis’. Peak overlaps were calculated for each antibody between pairs 
of experiments as described above. For target and condition pairs with 
sufficient read depth, the estimated library complexity was calculated 
using the ‘lc_extrap’ function from preseq version 3.2.0.

Histone modification diversity analysis
Chromatin state. Genome-wide coverage for 10-kb windows for 12 
histone marks (H3K27me3, H2AK119ub, H3K9me3, H4K20me3 and 
H3K9me3 from the 5 million (5M) condition in the K562 35-antibody 
pool experiment; H3K79me2, H3K79me1, H3K4me3, H3K4me2, 
H3K4me1, H3K9ac and H3K27ac from the K562 50-antibody pool 
experiment) was calculated using ‘multiBamCoverage’. These values 
were standardized for each mark by transforming into z-score values. 
The UMAP reduction was generated using the UMAP104 Python package 
and parameters n_components = 2 and n_neighbors = 3.

Heterochromatin-associated histone modifications. Validation 
of heterochromatin-associated histone modifications used the 5M 
condition in the K562 35-antibody pool experiment. Read coverage of 
H3K9me3, H4K20me3 and H3 was computed over annotation groups 
(ZNFs, LTRs, LINES, SINES, TSS ± 2 kb) using the ‘depth’ function from 
SAMtools version 1.9 (ref. 105). An enrichment score was calculated 
by normalizing for feature and target abundance (Supplementary 
Methods).

Promoter-associated histone modifications. Validation of 
promoter-associated histone modifications used the mESC 67-antibody 
pool experiment. Promoter coverage correlations were calculated 
across promoters from EPDNew106, a database of non-redundant 
eukaryotic RNAP II promoters, ±500 bp using ‘multiBamSummary’ 
and ‘plotCorrelations’.

Gene body-associated histone modifications. Validation of gene 
body-associated histone modifications used the 5M condition in the 
K562 35-antibody pool experiment and the K562 50-antibody pool 
experiment. Values in coverage metaplots over the gene bodies of all 
protein-coding genes from the GENCODE107 version 38 basic annota-
tion were calculated using ‘computeMatrix’ and normalized to the 
maximum and the minimum for each target.

Chromatin regulator diversity analysis
Polycomb-associated chromatin regulators. Validation of 
Polycomb-associated chromatin regulators used the K562 50-antibody 
pool experiment. Metaplots respective to RING1B peak sites were 
calculated using ‘computeMatrix’.

Heterochromatin-associated chromatin regulators. Validation 
of heterochromatin-associated chromatin regulators used the K562 
50-antibody pool experiment. Genome-wide coverage for 10-kb win-
dows and Pearson correlation coefficients were calculated using ‘multi-
BigwigSummary’ and ‘plotCorrelation’.

H3K4me3-associated chromatin regulators. Analysis of H3K4me3- 
associated chromatin regulators used the mESC 165-antibody pool 
experiments. Binding profiles of JARID1A, RBBP5 and PHF8 were 
measured ±1 kb around the TSS of all representative promoters from 
EPDNew and were clustered using k-means clustering with k = 4 by 
‘plotCoverage’.

Polymerase diversity analysis
RNAP I, II and III comparison. Validation of the various RNAPs used 
the mESC 165-antibody pool experiment. First, read coverage within 
a ±100-bp window surrounding the promoters and TSSs of various 
gene groups was calculated. Next, for each polymerase, coverage was 
normalized to the total reads aligned with any gene group. Finally, an 
enrichment score of the relative coverage compared to an IgG isotype 
control was calculated and plotted as a bar graph.

RNAP II phosphorylation state comparison. Validation of the vari-
ous RNAPs used the K562 52-antibody pool experiment. Values in 
the metaplots over the gene bodies of all protein-coding genes from 
the GENCODE version 38 basic annotation were calculated using 
‘computeMatrix’.

Mouse dendritic cell LPS stimulation time course analysis
Temporal pattern analysis. For genome-wide time course analysis 
of individual histone modifications, the read coverage per 100-kb 
bin genome wide for each target at each time point was calculated 
using ‘multiBigwigSummary’. Next, for each target, for each time 
point pair (for example, 6 h and 0 h, 24 h and 6 h), the enriched bins 
were determined by finding the knee point of the summed coverage 
per bin-versus-rank graph using the Python package ‘kneed’108. The 
scaled coverage per bin was calculated for each time point as (x − min)/
(max − min). The difference in coverage per bin was computed for 
enriched bins by subtracting the scaled coverage between time points.

For time course analysis of H3K27ac, enriched acetylated regions 
were determined by peak calling on the merged read file of histone acet-
ylation at all time points using the ‘findPeaks’ function from HOMER 
with ‘–minDist 100000’ and removing peaks with size <1,500 bp. 
Coverage of H3K27ac at each enriched region was computed using 
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‘multiBamSummary’ and normalized for read depth by dividing by the 
total reads for H3K27ac per respective time point. To focus on regions 
with higher coverage, regions with normalized read depth <0.05 CPM 
for all time points were removed from analysis. Coverage per time 
point was then rescaled to a minimum of 0 and a maximum of 1 using 
(x − min)/(max − min) per region. Rescaled regions were clustered into 
three clusters using the ‘kmeans’ function from scipy.cluster version 
1.13.0. See Supplementary Methods for subset criteria of ‘activated’ 
and ‘repressed’ regions.

Relationship with gene expression. RNA-seq data for LPS-stimulated 
mDCs at 0 h, 6 h and 24 h109 were processed using the RNA-seq pipe-
line from Nextflow110. Transcript abundances across different time 
samples were normalized using quantile normalization and filtered to 
remove low- or non-expressed genes. H3K27ac-enriched regions were 
paired with the gene that had the maximum cosine similarity between 
H3K27ac coverage and gene expression versus time of all genes within 
a 100-kb window. Transcription levels of genes assigned to each of the 
three H3K27ac clusters were plotted as a violin plot using seaborn ver-
sion 0.13.2 after removing duplicate genes and outlier values, defined 
as x < Q1 − 1.5 × IQR or x > Q3 + 1.5 × IQR.

For comparison of enhancer versus promoter versus gene body, 
the coverage of promoter-associated histone marks in the window 
±1,000 bp surrounding the TSS of expressed genes and the coverage of 
gene body-associated histone marks across the gene body of expressed 
genes were calculated using ‘multiBamSummary’. Coverage was scaled 
by the length of the region and, for each histone mark, normalized by 
sequencing depth and rescaled to a minimum of 0 and a maximum of 
1 using (x − min)/(max − min). For each histone mark and each pair of 
time points ((t0, t6), (t6, t24), (t0, t24)), the Spearman rank correlation 
coefficient between time points of histone coverage and transcription 
for each gene was calculated using the ‘spearmanr’ function from scipy.
stats version 1.13.0.

Histone combinatorial analyses
Polymerase-associated histone profiles. For RNAP I, track coverage 
profiles of various histone modifications 1.5 kb upstream to 0.5 kb 
downstream of the spacer promoter were visualized using IGV.

For RNAP II, metaplots of coverage profiles for various histone 
modifications were generated around active and inactive RNAP II 
promoters using ‘computeMatrix’ (reference-point -a 1000 -b 1000) 
and ‘plotProfile’. See Supplementary Methods for analysis involving 
bidirectional versus unidirectional promoters.

For RNAP III, metaplots of coverage profiles for various histone 
modifications were generated around active and inactive tRNA genes 
using ‘computeMatrix’ (scale-regions -a 1000 -b 1000 -m 75 -bs 25) and 
‘plotProfile’. tRNA genes were grouped into active or inactive categories 
based on the read coverage of RNAP III.

For comparison of relative histone levels, total coverage for each 
histone mark was calculated in the −1.5-kb to +0.5-kb window sur-
rounding the spacer promoter for rDNA, the −0.5-kb to +0.5-kb window 
around active RNAP II promoters and the −0.5-kb to +0.5-kb window 
around active RNAP III tRNA gene promoters. To account for differ-
ences in window size, the coverage of H3K56ac and H3K4me2 was 
normalized to the level of H3K4me3.

H3K4me3-enriched region clustering. Combinatorial histone modifi-
cation analysis for H3K4me3 regions used the 5M condition of the K562 
35-antibody pool experiment. Read coverage of ten histone targets 
(H3K79me3, H3K79me2, H3K36me3, H3K4me1, H3K4me2, H3K27ac, 
H3K27me3, H2AK119ub, H3K9me3 and H4K20me3) was calculated over 
all H3K4me3 peak regions using the ‘multicov’ function of BEDTools 
version 2.29.2. The resulting region-versus-histone data matrix (A) was 
normalized using log normalization111 (Supplementary Methods). The 
regions of the normalized data matrix were clustered using the cluster.

hierarchy.linkage function from SciPy version 1.6.2 (ref. 112) with a 
Euclidean distance metric and a complete linkage method.

Gene annotation of H3K4me3 regions was performed using the 
‘annotatePeaks.pl’ function from HOMER version 4.11. Definitions for 
each annotation group (ZNF genes, RP genes, lincRNA genes, snoRNA 
genes, satellite RNA genes, tRNA genes, cell cycle genes, bivalent genes 
and enhancer RNA regions) are provided in Supplementary Methods. 
To visualize enrichments of gene annotations in sets and subsets of the 
hierarchically clustered heatmap, the kernel density estimate (KDE) was 
calculated for each annotation group based on their clustering-defined 
order.

ChromHMM model of acetylation. The ChromHMM genome segmen-
tation model was built using 15 different histone acetylation modifica-
tions measured in the mESC 67-antibody pool experiment. BAM files 
were binarized using the BinarizeBam function from ChromHMM with 
a Poisson threshold of 0.000001 and other default parameters. The 
signal threshold was increased from the default to remove spurious 
noise. State models with 5–20 states were built using the LearnModel 
function with default parameters. States were manually reordered and 
grouped based on transition probabilities between states. Nineteen 
states were selected for the final model to retain state 17, a state with a 
distinctive enrichment and transition profile.

Non-negative matrix factorization of acetylated regions. 
Non-negative matrix factorization analysis used the histone acetylation 
mark data from the mESC 67-antibody pool experiment. A normalized 
read coverage matrix of acetylation-enriched genomic regions (N) 
versus histone acetylation marks (M) was generated (Supplementary 
Methods). NMF was performed on this data matrix using ‘NIMFA’113, a 
Python library for non-negative matrix factorization, with the nndsvd 
initialization method. The rank k was selected empirically, taking into 
account the biological assignability of the resulting states, the com-
plexity of the model and the stability of the factorization (the number 
of iterations the algorithm required to coverage). After factorization, 
the resulting basis matrix (N × k) contained the coefficient of each 
combination i for each genomic region. A sorted heatmap of the basis 
matrix was generated by grouping the regions according to the com-
bination that contributed the greatest coefficient for each region. For 
visualization, this heatmap was normalized by dividing the coefficients 
for each region by the total coefficient sum of the region. To profile and 
assign a biological interpretation to individual combinations, each 
region was assigned to the combination with the maximum coefficient. 
Identification of TFs with significant binding overlap with regions 
assigned to a single combination was performed using the Cistrome 
Data Browser, an interactive database of public ChIP–seq data114. Motif 
enrichment was calculated using the HOMER function ‘findMotifs’ on 
all genomic regions assigned to each combination. For comparison 
of enrichment levels in C4 versus C5, enrichments were calculated 
using bedgraphs from the mESC 165-antibody pool experiment and 
the ChromHMM program ‘OverlapEnrichment’ ( java -jar ChromHMM.
jar OverlapEnrichment -binres 1 -signal). Interval bars were generated 
by permutation-based resampling; enrichments were recalculated 
for 200 independent draws of 75% of the regions assigned to C4 or C5.

Statistics and reproducibility
Pearson correlation coefficients were calculated using the pearsonr 
function of scipy.stats version 1.13.0 (ref. 112) or generated using the 
‘plotCorrelation’ function from deepTools version 3.1.3 (ref. 97). Spear-
man rank correlation coefficients were calculated using the ‘spear-
manr’ function from scipy.stats version 1.13.0. The Mann–Whitney 
U-test was used to compare gene expression fold change following LPS 
stimulation between sets (Extended Data Fig. 6b) and was calculated 
using the ‘mannwhitneyu’ function from scipy.stats version 1.13.0. 
Statistical tests and distribution assumptions for peak calling are 
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intrinsic to the HOMER version 4.11 (ref. 99) peak-calling algorithm 
and commonly used and accepted for ChIP–seq data. P values for TF 
motifs were generated using HOMER version 4.11. Other statistical tests 
were performed using permutation or random sampling and make no 
implicit assumptions about distributions. Experimental details needed 
to reproduce individual ChIP-DIP experiments are provided in Sup-
plementary Methods. Key proteins were mapped in multiple different 
experimental replicates and show comparable results.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All ChIP-DIP datasets generated in this study are available at GEO: 
GSE227773. Accession numbers for publicly available datasets used 
in this study are listed in Supplementary Methods.

Code availability
Publicly available software and packages were used in this study as 
indicated in Methods and Supplementary Methods. The original code 
for the ChIP-DIP pipeline is available on GitHub at https://github.com/
GuttmanLab/chipdip-pipeline/tree/Paper (https://doi.org/10.5281/
zenodo.13952458) (ref. 115).
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Extended Data Fig. 1 | Potential sources of mixing in ChIP-DIP. (a) Schematic of 
labeling strategy to generate Protein G beads coupled with a unique antibody-
identifying oligonucleotide and a matched antibody. (i) Protein G beads are 
covalently modified with a biotin, (ii) oligonucleotides containing a 3’ biotin are 
conjugated to streptavidin, (iii) oligo-streptavidin complexes are mixed with 
biotinylated protein G beads and (iv) protein G beads are mixed with antibodies. 
This process is repeated for each unique oligonucleotide-antibody pair and 
then all bead-antibody conjugates are pooled together. (b) Schematic of three 
potential sources of dissociation of chromatin-antibody-bead-oligo conjugates 
that could lead to mixing during ChIP-DIP: dissociation 1) between oligo and 
bead, 2) between antibody and bead, or 3) between antibody and chromatin. (c) If 
oligos dissociate from their original beads and bind to distinct beads (oligo-bead 
dissociation), we would expect multiple distinct oligo types on the same bead. 
To quantify this, we computed the percent uniqueness of oligo-types within each 

split-pool cluster. The cumulative distribution of the uniqueness of antibody-ID 
oligos type (x-axis) within individual clusters is shown. (d) If antibodies dissociate 
from their original bead and reassociate with a different bead (antibody-bead 
dissociation), we expect that chromatin would associate with empty beads 
present in the experiment. We show a schematic of the experimental design 
to test for antibody movement between beads (top) and the quantification of 
reads per bead assigned to true targets (CTCF) or empty beads added during 
experimental processing steps (bottom). (e) If proteins (and their crosslinked 
chromatin) dissociate and reassociate to other beads containing the same 
epitope-specific antibodies (antibody-chromatin dissociation), we would expect 
that chromatin purified independently from human and mouse lysates would 
mix during the procedure. We show a schematic of the human-mouse mixing 
experimental design to test for chromatin movement (left) and quantification of 
species-specific reads assigned to human or mouse beads (right).
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Extended Data Fig. 2 | Mapping multiple components of the same regulator complex within a single experiment. (a) Visualization of various components of 
the PRC1 (RING1B, CBX8) and PRC2 (EZH2, SUZ12, EED) complexes that were mapped within the same ChIP-DIP pool (K562 52 Antibody Pool) along a genomic region 
(hg38, chr4:500,000-5,500,000).
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Extended Data Fig. 3 | Histone modifications associated with five chromatin 
states. (a) UMAP embedding of 12 histone modifications measured in K562 
correspond to five chromatin states. (b) Metaplot of signal distribution of 
H3K36me3, H3K79me1 and H3K79me2 across the gene body of protein coding 
genes in K562. (c) Correlation scatterplot of H3K9Ac and H3K4me3 signals at 

promoter sites in mESC. (d) Enrichment heatmap of H3K9me3 and H4K20me3 
at various associated (ZNF genes, LTRs, LINES) and unassociated (SINES, TSS) 
genomic elements in K562. H3 is shown as reference. For A-D, see Methods for 
details on ChIP-DIP experiments used for each analysis.
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Extended Data Fig. 4 | Chromatin regulators co-localizing with known 
histone targets. (a) Metaplots of read coverage for three H3K4me3-associated 
chromatin regulators ( JARID1A, RBBP5, PHF8) and H3K4me3 at four promoter 
groups in mESC. Promoter groups were identified using k-means clustering of CR 
signal. (b) Metaplot showing colocalization of multiple PRC1 and PRC2 members 

and their respective histone modifications at RING1B sites in K562. (c) Genome-
wide correlation matrix of multiple HP1 proteins versus heterochromatin and 
euchromatin markers in K562. For A-C, see Methods for details on ChIP-DIP 
experiments used for each analysis.
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Extended Data Fig. 5 | Simultaneous mapping of distinct RNA polymerases 
and their isoforms. (a) Bar graph showing enrichment of gene class coverage 
(rRNA, mRNA, snRNA or tRNA) for RNAP I, II and III in mESC. For each RNAP, the 
bar of its associated class (or classes) is highlighted. (b) Visualization of RNAP 

II phosphorylation isoforms across the NUP214 gene in K562 (left). Metaplot of 
signal distribution of RNAP II phosphorylation isoforms across the gene body of 
protein coding genes in K562 (right).
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Extended Data Fig. 6 | Chromatin dynamics and the relationship to gene 
expression following LPS stimulation in mDCs. (a) Heatmap of change in 
normalized coverage per 100 kb bin for various mapped factors. For each factor, 
only enriched bins are shown and bins are sorted left-to-right by magnitude of 
change. (b) Violin plot of gene expression fold change for 6hrs vs 0hrs (left) and 
24hrs vs 0hrs (right) grouped by sets of genes corresponding to sets of regions 
from Fig. 5C (see Methods). Shown are Mann-Whitney U test p-values. (c) Track 
visualization of H3K27ac at 0hrs, 6hrs and 24hrs across a genomic region (mm10, 

chr5:29,838,000-30,024,000) upstream of the inflammatory gene IL6 and 
containing regions belonging to the ‘activated’ set from Fig. 5B. (d) Heatmap of 
spearman correlation coefficients between histone coverage change and gene 
expression change between time points. Change is defined as the ratio between 
the two time points. All genes were included in the correlation heatmap on the 
left; only genes with a fold change of >2 in gene expression were included in the 
correlation heatmap on the right (see Methods and Supplemental Methods).
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Extended Data Fig. 7 | Transcription levels of specific clusters of H3K4me3 enriched regions. (a) Violin plot of the transcriptional levels, measured by the RNAP II 
occupancy, of the five major clusters of H3K4me3 regions identified in Fig. 7.
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Extended Data Fig. 8 | Histone acetylation marks are highly correlated genome-wide. (a) Genome-wide pearson correlation coefficients of 15 different histone 
acetylation marks in mESC. Correlations are based on coverage computed in 10 kb windows. (b) Comparison of 15 different histone acetylation marks across a genomic 
region (mm10, chr1:55,048,000-55,148,000) in mESC.
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Extended Data Fig. 9 | Enrichment profiles for NMF generated combinations 
(C1-C5) of histone acetylation marks. (a) RNAP II, TF and CR enrichment matrix 
for regions assigned to combinations (C1-C5) from NMF decomposition of highly 
acetylated regions using histone acetylation marks, shown in Fig. 8.  

(b) Heatmap of genome position enrichments relative to TSS for regions 
assigned to combinations. (c) Transcription factors of top 10 most significant 
sequence motifs for regions assigned to each combination are listed.
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Extended Data Fig. 10 | Profiles for high density regions of NANOG-OCT4-
SOX2. (a) Plot showing normalized region scores (x-axis) for peak regions of 
NANOG-OCT4-SOX2, ordered by rank (y-axis). High density regions are defined 
as regions past the point where the slope = 1. (b) Track visualization of NANOG-
OCT4-SOX2 upstream of the gene for the pluripotency transcription factor KLF4 
in mESC. A high density region is indicated with a red bar; low density regions are 
indicated with grey bars. (c) Visualization of NANOG-OCT4-SOX2 near the TET2 
gene, a developmentally associated chromatin regulator, in mESC. A high density 
region internal to the gene is indicated with a red bar. (d) Coverage metaplots 

over low density regions (LDR) vs high density regions (HDR) for pluripotency 
transcription factors and other transcriptional-related factors. Metagenes are 
centered on the region and the lengths represent the approximate difference 
in mean lengths (500 bps for LDRs and 14,500 bps for HDRs). An additional 
4 kb surrounding each region is shown. (e) Enrichment heatmap for GO terms 
of genes associated with HDRs or LDRs containing C4, C5 or neither C4/C5 
chromatin signatures. (f ) Enrichment heatmap for development-associated GO 
terms of genes associated with HDRs or LDRs containing C4, C5 or neither C4/C5 
chromatin signatures.
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